Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280542861> ?p ?o ?g. }
- W4280542861 abstract "To establish and verify the ability of a radiomics prediction model to distinguish invasive adenocarcinoma (IAC) and minimal invasive adenocarcinoma (MIA) presenting as ground-glass nodules (GGNs).We retrospectively analyzed 118 lung GGN images and clinical data from 106 patients in our hospital from March 2016 to April 2019. All pathological classifications of lung GGN were confirmed as IAC or MIA by two pathologists. R language software (version 3.5.1) was used for the statistical analysis of the general clinical data. ITK-SNAP (version 3.6) and A.K. software (Analysis Kit, American GE Company) were used to manually outline the regions of interest of lung GGNs and collect three-dimensional radiomics features. Patients were randomly divided into training and verification groups (ratio, 7:3). Random forest combined with hyperparameter tuning was used for feature selection and prediction modeling. The receiver operating characteristic curve and the area under the curve (AUC) were used to evaluate model prediction efficacy. The calibration curve was used to evaluate the calibration effect.There was no significant difference between IAC and MIA in terms of age, gender, smoking history, tumor history, and lung GGN location in both the training and verification groups (P>0.05). For each lung GGN, the collected data included 396 three-dimensional radiomics features in six categories. Based on the training cohort, nine optimal radiomics features in three categories were finally screened out, and a prediction model was established. We found that the training group had a high diagnostic efficacy [accuracy, sensitivity, specificity, and AUC of the training group were 0.89 (95%CI, 0.73 - 0.99), 0.98 (95%CI, 0.78 - 1.00), 0.81 (95%CI, 0.59 - 1.00), and 0.97 (95%CI, 0.92-1.00), respectively; those of the validation group were 0.80 (95%CI, 0.58 - 0.93), 0.82 (95%CI, 0.55 - 1.00), 0.78 (95%CI, 0.57 - 1.00), and 0.92 (95%CI, 0.83 - 1.00), respectively]. The model calibration curve showed good consistency between the predicted and actual probabilities.The radiomics prediction model established by combining random forest with hyperparameter tuning effectively distinguished IAC from MIA presenting as GGNs and represents a noninvasive, low-cost, rapid, and reproducible preoperative prediction method for clinical application." @default.
- W4280542861 created "2022-05-22" @default.
- W4280542861 creator A5002844930 @default.
- W4280542861 creator A5004806180 @default.
- W4280542861 creator A5033911788 @default.
- W4280542861 creator A5046742239 @default.
- W4280542861 creator A5047506621 @default.
- W4280542861 creator A5050005423 @default.
- W4280542861 creator A5074214562 @default.
- W4280542861 creator A5075371771 @default.
- W4280542861 creator A5082384393 @default.
- W4280542861 creator A5082677473 @default.
- W4280542861 creator A5083442586 @default.
- W4280542861 date "2022-05-12" @default.
- W4280542861 modified "2023-10-16" @default.
- W4280542861 title "Predictive Efficacy of a Radiomics Random Forest Model for Identifying Pathological Subtypes of Lung Adenocarcinoma Presenting as Ground-Glass Nodules" @default.
- W4280542861 cites W130099911 @default.
- W4280542861 cites W1981880138 @default.
- W4280542861 cites W2009525084 @default.
- W4280542861 cites W2017898137 @default.
- W4280542861 cites W2040741144 @default.
- W4280542861 cites W2041111989 @default.
- W4280542861 cites W2045359905 @default.
- W4280542861 cites W2049674541 @default.
- W4280542861 cites W2099635275 @default.
- W4280542861 cites W2116502138 @default.
- W4280542861 cites W2128739912 @default.
- W4280542861 cites W2129597285 @default.
- W4280542861 cites W2147023528 @default.
- W4280542861 cites W2154741421 @default.
- W4280542861 cites W2161087401 @default.
- W4280542861 cites W2170250174 @default.
- W4280542861 cites W2171504471 @default.
- W4280542861 cites W2208081170 @default.
- W4280542861 cites W2316080280 @default.
- W4280542861 cites W2323500768 @default.
- W4280542861 cites W2324080174 @default.
- W4280542861 cites W2333302450 @default.
- W4280542861 cites W2338137334 @default.
- W4280542861 cites W2340293510 @default.
- W4280542861 cites W2560322684 @default.
- W4280542861 cites W2588978745 @default.
- W4280542861 cites W2770987919 @default.
- W4280542861 cites W2806191962 @default.
- W4280542861 cites W2810524012 @default.
- W4280542861 cites W2967902005 @default.
- W4280542861 cites W2972534590 @default.
- W4280542861 cites W3010662565 @default.
- W4280542861 cites W3032755490 @default.
- W4280542861 cites W3048160945 @default.
- W4280542861 cites W3048765867 @default.
- W4280542861 cites W3080199224 @default.
- W4280542861 cites W3133349582 @default.
- W4280542861 cites W4248924315 @default.
- W4280542861 cites W4362175132 @default.
- W4280542861 cites W783453938 @default.
- W4280542861 doi "https://doi.org/10.3389/fonc.2022.872503" @default.
- W4280542861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35646675" @default.
- W4280542861 hasPublicationYear "2022" @default.
- W4280542861 type Work @default.
- W4280542861 citedByCount "2" @default.
- W4280542861 countsByYear W42805428612023 @default.
- W4280542861 crossrefType "journal-article" @default.
- W4280542861 hasAuthorship W4280542861A5002844930 @default.
- W4280542861 hasAuthorship W4280542861A5004806180 @default.
- W4280542861 hasAuthorship W4280542861A5033911788 @default.
- W4280542861 hasAuthorship W4280542861A5046742239 @default.
- W4280542861 hasAuthorship W4280542861A5047506621 @default.
- W4280542861 hasAuthorship W4280542861A5050005423 @default.
- W4280542861 hasAuthorship W4280542861A5074214562 @default.
- W4280542861 hasAuthorship W4280542861A5075371771 @default.
- W4280542861 hasAuthorship W4280542861A5082384393 @default.
- W4280542861 hasAuthorship W4280542861A5082677473 @default.
- W4280542861 hasAuthorship W4280542861A5083442586 @default.
- W4280542861 hasBestOaLocation W42805428611 @default.
- W4280542861 hasConcept C121608353 @default.
- W4280542861 hasConcept C126322002 @default.
- W4280542861 hasConcept C126838900 @default.
- W4280542861 hasConcept C154945302 @default.
- W4280542861 hasConcept C169258074 @default.
- W4280542861 hasConcept C207886595 @default.
- W4280542861 hasConcept C2777714996 @default.
- W4280542861 hasConcept C2778559731 @default.
- W4280542861 hasConcept C2781182431 @default.
- W4280542861 hasConcept C41008148 @default.
- W4280542861 hasConcept C535046627 @default.
- W4280542861 hasConcept C58471807 @default.
- W4280542861 hasConcept C71924100 @default.
- W4280542861 hasConcept C72563966 @default.
- W4280542861 hasConcept C76318530 @default.
- W4280542861 hasConceptScore W4280542861C121608353 @default.
- W4280542861 hasConceptScore W4280542861C126322002 @default.
- W4280542861 hasConceptScore W4280542861C126838900 @default.
- W4280542861 hasConceptScore W4280542861C154945302 @default.
- W4280542861 hasConceptScore W4280542861C169258074 @default.
- W4280542861 hasConceptScore W4280542861C207886595 @default.
- W4280542861 hasConceptScore W4280542861C2777714996 @default.
- W4280542861 hasConceptScore W4280542861C2778559731 @default.
- W4280542861 hasConceptScore W4280542861C2781182431 @default.
- W4280542861 hasConceptScore W4280542861C41008148 @default.