Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280555452> ?p ?o ?g. }
- W4280555452 endingPage "112188" @default.
- W4280555452 startingPage "112188" @default.
- W4280555452 abstract "In the real application of chiller fault diagnosis models, the various working conditions may cause the different data distribution between test data and training data, which may lead to the lower diagnosis accuracy of models. In this paper, a novel fault diagnosis method for chillers across working conditions based on the domain knowledge-assisted Deep Extreme Learning Machine (DELM) is proposed. Firstly, the actual normal and performance degradation operation data of the chiller is collected through the Internet of Things Intelligent Agent (IOTIA). The Random Forest (RF) is used to determine the importance of features selected by domain knowledge analysis, and different feature subsets are selected as the model input. Then, the model of the DELM is used for fault diagnosis of chillers across varying temperature and load rate working conditions. Finally, experiments show that the proposed model achieves outstanding effect under the designed seven experimental across working conditions, indicating that the model has good generalization ability and is suitable for fault diagnosis across working conditions of chillers." @default.
- W4280555452 created "2022-05-22" @default.
- W4280555452 creator A5004780683 @default.
- W4280555452 creator A5040778872 @default.
- W4280555452 creator A5053463143 @default.
- W4280555452 creator A5061728945 @default.
- W4280555452 creator A5071317221 @default.
- W4280555452 date "2022-08-01" @default.
- W4280555452 modified "2023-10-16" @default.
- W4280555452 title "Across working conditions fault diagnosis for chillers based on IoT intelligent agent with deep learning model" @default.
- W4280555452 cites W1974531744 @default.
- W4280555452 cites W1975943680 @default.
- W4280555452 cites W1987801135 @default.
- W4280555452 cites W2003438283 @default.
- W4280555452 cites W2009143424 @default.
- W4280555452 cites W2010272158 @default.
- W4280555452 cites W2033266347 @default.
- W4280555452 cites W2038076318 @default.
- W4280555452 cites W2052570332 @default.
- W4280555452 cites W2059562544 @default.
- W4280555452 cites W2059668481 @default.
- W4280555452 cites W2076063813 @default.
- W4280555452 cites W2083658684 @default.
- W4280555452 cites W2089662726 @default.
- W4280555452 cites W2092229687 @default.
- W4280555452 cites W2092685740 @default.
- W4280555452 cites W2098985670 @default.
- W4280555452 cites W2099866409 @default.
- W4280555452 cites W2111072639 @default.
- W4280555452 cites W2136922672 @default.
- W4280555452 cites W2197522306 @default.
- W4280555452 cites W2251249617 @default.
- W4280555452 cites W2364344616 @default.
- W4280555452 cites W2549821683 @default.
- W4280555452 cites W2592709964 @default.
- W4280555452 cites W2620512989 @default.
- W4280555452 cites W2762841298 @default.
- W4280555452 cites W2793135643 @default.
- W4280555452 cites W2804601703 @default.
- W4280555452 cites W2910125217 @default.
- W4280555452 cites W2911794652 @default.
- W4280555452 cites W2938814897 @default.
- W4280555452 cites W2963100393 @default.
- W4280555452 cites W2988126004 @default.
- W4280555452 cites W2988729496 @default.
- W4280555452 cites W2994209110 @default.
- W4280555452 cites W2999491213 @default.
- W4280555452 cites W3002783982 @default.
- W4280555452 cites W3010707121 @default.
- W4280555452 cites W3022978786 @default.
- W4280555452 cites W3025981493 @default.
- W4280555452 cites W3035504170 @default.
- W4280555452 cites W3047606632 @default.
- W4280555452 cites W3088906120 @default.
- W4280555452 cites W3096853769 @default.
- W4280555452 cites W3108639717 @default.
- W4280555452 cites W3128324886 @default.
- W4280555452 cites W3145277641 @default.
- W4280555452 cites W3153794886 @default.
- W4280555452 cites W3159013246 @default.
- W4280555452 cites W3159622438 @default.
- W4280555452 cites W3161709284 @default.
- W4280555452 cites W3165866832 @default.
- W4280555452 cites W3181638476 @default.
- W4280555452 cites W3186442101 @default.
- W4280555452 cites W3197360587 @default.
- W4280555452 doi "https://doi.org/10.1016/j.enbuild.2022.112188" @default.
- W4280555452 hasPublicationYear "2022" @default.
- W4280555452 type Work @default.
- W4280555452 citedByCount "4" @default.
- W4280555452 countsByYear W42805554522022 @default.
- W4280555452 countsByYear W42805554522023 @default.
- W4280555452 crossrefType "journal-article" @default.
- W4280555452 hasAuthorship W4280555452A5004780683 @default.
- W4280555452 hasAuthorship W4280555452A5040778872 @default.
- W4280555452 hasAuthorship W4280555452A5053463143 @default.
- W4280555452 hasAuthorship W4280555452A5061728945 @default.
- W4280555452 hasAuthorship W4280555452A5071317221 @default.
- W4280555452 hasConcept C119857082 @default.
- W4280555452 hasConcept C121332964 @default.
- W4280555452 hasConcept C127313418 @default.
- W4280555452 hasConcept C127413603 @default.
- W4280555452 hasConcept C131097465 @default.
- W4280555452 hasConcept C134306372 @default.
- W4280555452 hasConcept C154945302 @default.
- W4280555452 hasConcept C165205528 @default.
- W4280555452 hasConcept C175551986 @default.
- W4280555452 hasConcept C177148314 @default.
- W4280555452 hasConcept C182254935 @default.
- W4280555452 hasConcept C199499590 @default.
- W4280555452 hasConcept C200601418 @default.
- W4280555452 hasConcept C33923547 @default.
- W4280555452 hasConcept C36503486 @default.
- W4280555452 hasConcept C41008148 @default.
- W4280555452 hasConcept C44154836 @default.
- W4280555452 hasConcept C4638862 @default.
- W4280555452 hasConcept C78519656 @default.
- W4280555452 hasConcept C97355855 @default.