Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280561173> ?p ?o ?g. }
- W4280561173 endingPage "104438" @default.
- W4280561173 startingPage "104438" @default.
- W4280561173 abstract "The creative destruction wrought by high-frequency algorithmic trading has raised increasing concerns about the effect of machine learning behaviors and ultra high-frequency trading on financial markets. By employing a genetic algorithm with a classifier system as an adaptive learning tool, we address some of these concerns by studying a dynamic limit order market model with asymmetric information and varying speeds of high-frequency trading (HFT). We show that HFT benefits uninformed traders, improves information efficiency but reduces market liquidity. We find that there is a trade-off where a competition effect erodes the information and speed advantages of high-frequency traders, increasing trading speeds of HF traders reduces market liquidity but generates a hump-shaped relationship to the profitability of high-frequency traders and information efficiency. This research finds there may be potential benefits to throttling the trading speed arms race to improve market efficiency. We also find that strategic algorithmic trading compensates for diminishments in speed advantages, providing an insight on machine behavior in the FinTech age." @default.
- W4280561173 created "2022-05-22" @default.
- W4280561173 creator A5000121536 @default.
- W4280561173 creator A5052634750 @default.
- W4280561173 creator A5054740734 @default.
- W4280561173 date "2022-06-01" @default.
- W4280561173 modified "2023-10-15" @default.
- W4280561173 title "Machine learning and speed in high-frequency trading" @default.
- W4280561173 cites W1968533795 @default.
- W4280561173 cites W1984534545 @default.
- W4280561173 cites W2009758857 @default.
- W4280561173 cites W2014173738 @default.
- W4280561173 cites W2017474768 @default.
- W4280561173 cites W2018567859 @default.
- W4280561173 cites W2047347819 @default.
- W4280561173 cites W2049045603 @default.
- W4280561173 cites W2060331219 @default.
- W4280561173 cites W2071732693 @default.
- W4280561173 cites W2100011707 @default.
- W4280561173 cites W2104154419 @default.
- W4280561173 cites W2117178771 @default.
- W4280561173 cites W2121226303 @default.
- W4280561173 cites W2121681609 @default.
- W4280561173 cites W2122960498 @default.
- W4280561173 cites W2133756959 @default.
- W4280561173 cites W2162077858 @default.
- W4280561173 cites W2171217792 @default.
- W4280561173 cites W2171578889 @default.
- W4280561173 cites W2217182026 @default.
- W4280561173 cites W2238750598 @default.
- W4280561173 cites W2334819703 @default.
- W4280561173 cites W2411042236 @default.
- W4280561173 cites W2560362595 @default.
- W4280561173 cites W2748415365 @default.
- W4280561173 cites W2968579817 @default.
- W4280561173 cites W2969883770 @default.
- W4280561173 cites W3020559536 @default.
- W4280561173 cites W3121195520 @default.
- W4280561173 cites W3122786537 @default.
- W4280561173 cites W3122891018 @default.
- W4280561173 cites W3123516635 @default.
- W4280561173 cites W3123766096 @default.
- W4280561173 cites W3124121921 @default.
- W4280561173 cites W3124359574 @default.
- W4280561173 cites W3124461485 @default.
- W4280561173 cites W3124529279 @default.
- W4280561173 cites W4211017739 @default.
- W4280561173 cites W4212946524 @default.
- W4280561173 cites W4232677954 @default.
- W4280561173 doi "https://doi.org/10.1016/j.jedc.2022.104438" @default.
- W4280561173 hasPublicationYear "2022" @default.
- W4280561173 type Work @default.
- W4280561173 citedByCount "4" @default.
- W4280561173 countsByYear W42805611732018 @default.
- W4280561173 countsByYear W42805611732022 @default.
- W4280561173 crossrefType "journal-article" @default.
- W4280561173 hasAuthorship W4280561173A5000121536 @default.
- W4280561173 hasAuthorship W4280561173A5052634750 @default.
- W4280561173 hasAuthorship W4280561173A5054740734 @default.
- W4280561173 hasConcept C10138342 @default.
- W4280561173 hasConcept C106159729 @default.
- W4280561173 hasConcept C11906137 @default.
- W4280561173 hasConcept C129361004 @default.
- W4280561173 hasConcept C131562839 @default.
- W4280561173 hasConcept C158876240 @default.
- W4280561173 hasConcept C162324750 @default.
- W4280561173 hasConcept C172428447 @default.
- W4280561173 hasConcept C179262372 @default.
- W4280561173 hasConcept C182306322 @default.
- W4280561173 hasConcept C183582576 @default.
- W4280561173 hasConcept C19244329 @default.
- W4280561173 hasConcept C24683644 @default.
- W4280561173 hasConcept C2779309563 @default.
- W4280561173 hasConcept C39570901 @default.
- W4280561173 hasConcept C40700 @default.
- W4280561173 hasConcept C41008148 @default.
- W4280561173 hasConcept C51926234 @default.
- W4280561173 hasConcept C556758197 @default.
- W4280561173 hasConcept C63240072 @default.
- W4280561173 hasConcept C65972490 @default.
- W4280561173 hasConcept C78508483 @default.
- W4280561173 hasConceptScore W4280561173C10138342 @default.
- W4280561173 hasConceptScore W4280561173C106159729 @default.
- W4280561173 hasConceptScore W4280561173C11906137 @default.
- W4280561173 hasConceptScore W4280561173C129361004 @default.
- W4280561173 hasConceptScore W4280561173C131562839 @default.
- W4280561173 hasConceptScore W4280561173C158876240 @default.
- W4280561173 hasConceptScore W4280561173C162324750 @default.
- W4280561173 hasConceptScore W4280561173C172428447 @default.
- W4280561173 hasConceptScore W4280561173C179262372 @default.
- W4280561173 hasConceptScore W4280561173C182306322 @default.
- W4280561173 hasConceptScore W4280561173C183582576 @default.
- W4280561173 hasConceptScore W4280561173C19244329 @default.
- W4280561173 hasConceptScore W4280561173C24683644 @default.
- W4280561173 hasConceptScore W4280561173C2779309563 @default.
- W4280561173 hasConceptScore W4280561173C39570901 @default.
- W4280561173 hasConceptScore W4280561173C40700 @default.
- W4280561173 hasConceptScore W4280561173C41008148 @default.