Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280567567> ?p ?o ?g. }
- W4280567567 endingPage "116422" @default.
- W4280567567 startingPage "116422" @default.
- W4280567567 abstract "• RuO 2 and PdO are co-impregnated with ZnO on γ-Al 2 O 3 support to develop mixed metal oxide electrocatalysts for HzOR. • Ternary metal oxide catalysts displayed superior current output than binary catalysts i.e. 1% RuO 2 -ZnO/Al 2 O 3 and 1% PdO-ZnO/Al 2 O 3 displayed 1.3 and 23.3 folds’ increase in current density comparative to binary catalyst i.e. ZnO/Al 2 O 3 . • PdO-ZnO/Al 2 O 3 displayed the best catalytic response towards N 2 H 4 electrooxidation among all catalysts in series owing to its high surface area of 0.23 cm 2 , highest current density of 5.2 mA cm −2 and largest diffusion coefficient i.e. 50 × 10 −6 cm 2 s −1 . • Incorporation of trace amounts of noble metal oxides ( i.e. 0.1 to 1.0%) in binary catalysts promoted their electrocatalytic properties. Development of highly catalyzing electrode materials for hydrazine electrooxidation reaction (HzOR) demands a judicious assortment of intrinsically active candidates, precise engineering of electrodes for enhancement of active sites and building of electronically conductive structures. Herein, we report the novel, innovative and robust heterogeneous electrocatalysts for HzOR for ultimate hydrogen generation and their applicability in direct hydrazine fuel cell (DHFC). The presented catalysts comprised of ZnO microparticles supported on γ-Al 2 O 3 with different weight percentages (10, 20, 30, 40 wt/wt%). Binary catalyst i.e. 20% ZnO/Al 2 O 3 displayed the maximum catalytic output towards HzOR, so it is chosen to further combine with RuO 2 and PdO to investigate a promoted and enhanced oxidation output. Ternary metal oxide catalysts i.e. RuO 2 -ZnO/Al 2 O 3 and PdO-ZnO/Al 2 O 3 with varied contents of RuO 2 and PdO (0.1, 0.5 and 1 wt/wt%) are prepared via co-impregnation method. X-Ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy coupled energy dispersive spectroscopy (SEM-EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are the techniques employed for physio-chemical characterization of samples. Among all the investigated catalysts, 1% PdO-ZnO/Al 2 O 3 produced the most catalyzing behavior toward HzOR owing to its largest diffusion coefficient (50.0 × 10 −6 cm 2 s −1 ), highest current density (5.2 mA cm −2 ) and high ECSA (0.23 cm 2 ). The catalysts showed sufficient reproducibility and stability by scanning multiple cycles and testing similar electrodes after different time intervals. This is the first study of hydrazine electrooxidation protocol employing RuO 2 and PdO promoted γ-alumina supported ZnO structured electrocatalysts." @default.
- W4280567567 created "2022-05-22" @default.
- W4280567567 creator A5003194921 @default.
- W4280567567 creator A5023694486 @default.
- W4280567567 creator A5037602064 @default.
- W4280567567 creator A5039216137 @default.
- W4280567567 creator A5050443226 @default.
- W4280567567 creator A5078859202 @default.
- W4280567567 creator A5079170220 @default.
- W4280567567 date "2022-07-01" @default.
- W4280567567 modified "2023-09-26" @default.
- W4280567567 title "Ruthenium and palladium oxide promoted zinc oxide nanoparticles: Efficient electrocatalysts for hydrazine oxidation reaction" @default.
- W4280567567 cites W1965242642 @default.
- W4280567567 cites W1992858774 @default.
- W4280567567 cites W1999050020 @default.
- W4280567567 cites W2024637369 @default.
- W4280567567 cites W2042314661 @default.
- W4280567567 cites W2045312232 @default.
- W4280567567 cites W2047399977 @default.
- W4280567567 cites W2062535368 @default.
- W4280567567 cites W2062623195 @default.
- W4280567567 cites W2068012364 @default.
- W4280567567 cites W2069719713 @default.
- W4280567567 cites W2080144777 @default.
- W4280567567 cites W2126804545 @default.
- W4280567567 cites W2147699886 @default.
- W4280567567 cites W2151727123 @default.
- W4280567567 cites W2194732955 @default.
- W4280567567 cites W2280498525 @default.
- W4280567567 cites W2330278132 @default.
- W4280567567 cites W2335521374 @default.
- W4280567567 cites W2336563233 @default.
- W4280567567 cites W2504285083 @default.
- W4280567567 cites W2504564620 @default.
- W4280567567 cites W2551005392 @default.
- W4280567567 cites W2606803028 @default.
- W4280567567 cites W2736801641 @default.
- W4280567567 cites W2765439020 @default.
- W4280567567 cites W2783849308 @default.
- W4280567567 cites W2796766886 @default.
- W4280567567 cites W2803504636 @default.
- W4280567567 cites W2805250197 @default.
- W4280567567 cites W2901544849 @default.
- W4280567567 cites W2902543175 @default.
- W4280567567 cites W2907276407 @default.
- W4280567567 cites W2910914874 @default.
- W4280567567 cites W2919562555 @default.
- W4280567567 cites W2923175838 @default.
- W4280567567 cites W2931836949 @default.
- W4280567567 cites W2938901790 @default.
- W4280567567 cites W2970265923 @default.
- W4280567567 cites W2971939117 @default.
- W4280567567 cites W2975258322 @default.
- W4280567567 cites W2984626062 @default.
- W4280567567 cites W2998294137 @default.
- W4280567567 cites W3000137666 @default.
- W4280567567 cites W3004425620 @default.
- W4280567567 cites W3017821367 @default.
- W4280567567 cites W3035381607 @default.
- W4280567567 cites W3035673231 @default.
- W4280567567 cites W3036042118 @default.
- W4280567567 cites W3038962093 @default.
- W4280567567 cites W3040822341 @default.
- W4280567567 cites W3081596650 @default.
- W4280567567 cites W3111030546 @default.
- W4280567567 cites W3113257900 @default.
- W4280567567 cites W3126460826 @default.
- W4280567567 cites W3129631547 @default.
- W4280567567 cites W3132130414 @default.
- W4280567567 cites W3134059183 @default.
- W4280567567 cites W3135166247 @default.
- W4280567567 cites W3139291571 @default.
- W4280567567 cites W3148462080 @default.
- W4280567567 cites W3156985289 @default.
- W4280567567 cites W3157393437 @default.
- W4280567567 cites W3169230962 @default.
- W4280567567 cites W3201476325 @default.
- W4280567567 cites W3202031739 @default.
- W4280567567 cites W4205124143 @default.
- W4280567567 cites W4210677775 @default.
- W4280567567 doi "https://doi.org/10.1016/j.jelechem.2022.116422" @default.
- W4280567567 hasPublicationYear "2022" @default.
- W4280567567 type Work @default.
- W4280567567 citedByCount "9" @default.
- W4280567567 countsByYear W42805675672022 @default.
- W4280567567 countsByYear W42805675672023 @default.
- W4280567567 crossrefType "journal-article" @default.
- W4280567567 hasAuthorship W4280567567A5003194921 @default.
- W4280567567 hasAuthorship W4280567567A5023694486 @default.
- W4280567567 hasAuthorship W4280567567A5037602064 @default.
- W4280567567 hasAuthorship W4280567567A5039216137 @default.
- W4280567567 hasAuthorship W4280567567A5050443226 @default.
- W4280567567 hasAuthorship W4280567567A5078859202 @default.
- W4280567567 hasAuthorship W4280567567A5079170220 @default.
- W4280567567 hasConcept C155672457 @default.
- W4280567567 hasConcept C161790260 @default.
- W4280567567 hasConcept C171250308 @default.
- W4280567567 hasConcept C178790620 @default.