Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280569680> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4280569680 endingPage "3828" @default.
- W4280569680 startingPage "3819" @default.
- W4280569680 abstract "Recently, phishing attacks have become one of the most prominent social engineering attacks faced by public internet users, governments, and businesses. In response to this threat, this paper proposes to give a complete vision to what Machine learning is, what phishers are using to trick gullible users with different types of phishing attacks techniques and based on our survey that phishing emails is the most effective on the targeted sectors and users which we are going to compare as well. Therefore, more effective phishing detection technology is needed to curb the threat of phishing emails that are growing at an alarming rate in recent years, thus will discuss the techniques of mitigation of phishing by Machine learning algorithms and technical solutions that have been proposed to mitigate the problem of phishing and valuable awareness knowledge users should be aware to detect and prevent from being duped by phishing scams. In this work, we proposed a detection model using machine learning techniques by splitting the dataset to train the detection model and validating the results using the test data , to capture inherent characteristics of the email text, and other features to be classified as phishing or non-phishing using three different data sets, After making a comparison between them, we obtained that the most number of features used the most accurate and efficient results achieved. the best ML algorithm accuracy were 0.88, 1.00, and 0.97 consecutively for boosted decision tree on the applied data sets." @default.
- W4280569680 created "2022-05-22" @default.
- W4280569680 creator A5009842345 @default.
- W4280569680 creator A5032619601 @default.
- W4280569680 creator A5032974396 @default.
- W4280569680 creator A5038179267 @default.
- W4280569680 creator A5043125437 @default.
- W4280569680 creator A5078974960 @default.
- W4280569680 date "2022-05-14" @default.
- W4280569680 modified "2023-10-12" @default.
- W4280569680 title "An intelligent cyber security phishing detection system using deep learning techniques" @default.
- W4280569680 cites W1995627278 @default.
- W4280569680 cites W2028223155 @default.
- W4280569680 cites W2029591949 @default.
- W4280569680 cites W2040174723 @default.
- W4280569680 cites W2071869991 @default.
- W4280569680 cites W2077368288 @default.
- W4280569680 cites W2091096276 @default.
- W4280569680 cites W2134750673 @default.
- W4280569680 cites W2148614760 @default.
- W4280569680 cites W2157597875 @default.
- W4280569680 cites W2162532690 @default.
- W4280569680 cites W2255570509 @default.
- W4280569680 cites W2335888457 @default.
- W4280569680 cites W2547400098 @default.
- W4280569680 cites W2626950451 @default.
- W4280569680 cites W2788910343 @default.
- W4280569680 cites W2902288183 @default.
- W4280569680 cites W2933127114 @default.
- W4280569680 cites W2946082400 @default.
- W4280569680 cites W2949344452 @default.
- W4280569680 cites W3035962230 @default.
- W4280569680 cites W3044201297 @default.
- W4280569680 cites W3044879282 @default.
- W4280569680 cites W3045022873 @default.
- W4280569680 cites W3087776919 @default.
- W4280569680 cites W3171117050 @default.
- W4280569680 cites W3177613403 @default.
- W4280569680 cites W3208082224 @default.
- W4280569680 cites W4206921630 @default.
- W4280569680 cites W4224294104 @default.
- W4280569680 doi "https://doi.org/10.1007/s10586-022-03604-4" @default.
- W4280569680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35602317" @default.
- W4280569680 hasPublicationYear "2022" @default.
- W4280569680 type Work @default.
- W4280569680 citedByCount "17" @default.
- W4280569680 countsByYear W42805696802022 @default.
- W4280569680 countsByYear W42805696802023 @default.
- W4280569680 crossrefType "journal-article" @default.
- W4280569680 hasAuthorship W4280569680A5009842345 @default.
- W4280569680 hasAuthorship W4280569680A5032619601 @default.
- W4280569680 hasAuthorship W4280569680A5032974396 @default.
- W4280569680 hasAuthorship W4280569680A5038179267 @default.
- W4280569680 hasAuthorship W4280569680A5043125437 @default.
- W4280569680 hasAuthorship W4280569680A5078974960 @default.
- W4280569680 hasBestOaLocation W42805696801 @default.
- W4280569680 hasConcept C110875604 @default.
- W4280569680 hasConcept C119857082 @default.
- W4280569680 hasConcept C136764020 @default.
- W4280569680 hasConcept C154945302 @default.
- W4280569680 hasConcept C38652104 @default.
- W4280569680 hasConcept C41008148 @default.
- W4280569680 hasConcept C83860907 @default.
- W4280569680 hasConcept C84525736 @default.
- W4280569680 hasConceptScore W4280569680C110875604 @default.
- W4280569680 hasConceptScore W4280569680C119857082 @default.
- W4280569680 hasConceptScore W4280569680C136764020 @default.
- W4280569680 hasConceptScore W4280569680C154945302 @default.
- W4280569680 hasConceptScore W4280569680C38652104 @default.
- W4280569680 hasConceptScore W4280569680C41008148 @default.
- W4280569680 hasConceptScore W4280569680C83860907 @default.
- W4280569680 hasConceptScore W4280569680C84525736 @default.
- W4280569680 hasIssue "6" @default.
- W4280569680 hasLocation W42805696801 @default.
- W4280569680 hasLocation W42805696802 @default.
- W4280569680 hasLocation W42805696803 @default.
- W4280569680 hasOpenAccess W4280569680 @default.
- W4280569680 hasPrimaryLocation W42805696801 @default.
- W4280569680 hasRelatedWork W1470425429 @default.
- W4280569680 hasRelatedWork W2061519013 @default.
- W4280569680 hasRelatedWork W2943828307 @default.
- W4280569680 hasRelatedWork W3185179407 @default.
- W4280569680 hasRelatedWork W4205478082 @default.
- W4280569680 hasRelatedWork W4304208227 @default.
- W4280569680 hasRelatedWork W4312566969 @default.
- W4280569680 hasRelatedWork W4318350883 @default.
- W4280569680 hasRelatedWork W4328134586 @default.
- W4280569680 hasRelatedWork W4375928350 @default.
- W4280569680 hasVolume "25" @default.
- W4280569680 isParatext "false" @default.
- W4280569680 isRetracted "false" @default.
- W4280569680 workType "article" @default.