Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280578051> ?p ?o ?g. }
- W4280578051 endingPage "10" @default.
- W4280578051 startingPage "1" @default.
- W4280578051 abstract "Accurate power load forecasting is essential for power grid operation and dispatching. To further improve the accuracy of power load forecasting, this study proposes a new power load forecasting method. Firstly, correlation coefficients of influential variables are calculated for feature selection. Secondly, the form of input data is changed to adjust for autocorrelated errors. Thirdly, data features are extracted by convolutional neural networks (CNN) to construct feature vectors. Finally, the feature vectors are input into long short-term memory (LSTM) network for training to obtain prediction results. Moreover, for solving the problem that network hyperparameters are difficult to set, the simulated annealing particle swarm optimization (SAPSO) algorithm is used to optimize the hyperparameters. Experiments show that the prediction accuracy of the proposed model is higher compared with LSTM, CNN-LSTM, and other models." @default.
- W4280578051 created "2022-05-22" @default.
- W4280578051 creator A5031869811 @default.
- W4280578051 date "2022-05-14" @default.
- W4280578051 modified "2023-10-14" @default.
- W4280578051 title "Short-Term Power Load Forecasting Based on SAPSO-CNN-LSTM Model considering Autocorrelated Errors" @default.
- W4280578051 cites W1998043659 @default.
- W4280578051 cites W2017887707 @default.
- W4280578051 cites W2081169227 @default.
- W4280578051 cites W2094859928 @default.
- W4280578051 cites W2152195021 @default.
- W4280578051 cites W2599285715 @default.
- W4280578051 cites W2792147617 @default.
- W4280578051 cites W2801143634 @default.
- W4280578051 cites W2910849319 @default.
- W4280578051 cites W2972462266 @default.
- W4280578051 cites W3133476558 @default.
- W4280578051 cites W3139255054 @default.
- W4280578051 cites W3157275461 @default.
- W4280578051 cites W3159558522 @default.
- W4280578051 cites W3162584602 @default.
- W4280578051 cites W3193034144 @default.
- W4280578051 cites W3201534174 @default.
- W4280578051 cites W3215322434 @default.
- W4280578051 cites W3215395840 @default.
- W4280578051 cites W4200215659 @default.
- W4280578051 cites W4205116507 @default.
- W4280578051 cites W4205377699 @default.
- W4280578051 cites W4206101647 @default.
- W4280578051 cites W4211230577 @default.
- W4280578051 cites W4253174946 @default.
- W4280578051 cites W4280651982 @default.
- W4280578051 cites W4293222596 @default.
- W4280578051 cites W3205100669 @default.
- W4280578051 doi "https://doi.org/10.1155/2022/2871889" @default.
- W4280578051 hasPublicationYear "2022" @default.
- W4280578051 type Work @default.
- W4280578051 citedByCount "0" @default.
- W4280578051 crossrefType "journal-article" @default.
- W4280578051 hasAuthorship W4280578051A5031869811 @default.
- W4280578051 hasBestOaLocation W42805780511 @default.
- W4280578051 hasConcept C105795698 @default.
- W4280578051 hasConcept C114775468 @default.
- W4280578051 hasConcept C119857082 @default.
- W4280578051 hasConcept C121332964 @default.
- W4280578051 hasConcept C126980161 @default.
- W4280578051 hasConcept C138885662 @default.
- W4280578051 hasConcept C148483581 @default.
- W4280578051 hasConcept C151406439 @default.
- W4280578051 hasConcept C153180895 @default.
- W4280578051 hasConcept C154945302 @default.
- W4280578051 hasConcept C24338571 @default.
- W4280578051 hasConcept C2776401178 @default.
- W4280578051 hasConcept C33923547 @default.
- W4280578051 hasConcept C41008148 @default.
- W4280578051 hasConcept C41895202 @default.
- W4280578051 hasConcept C50644808 @default.
- W4280578051 hasConcept C5297727 @default.
- W4280578051 hasConcept C61797465 @default.
- W4280578051 hasConcept C62520636 @default.
- W4280578051 hasConcept C85617194 @default.
- W4280578051 hasConcept C8642999 @default.
- W4280578051 hasConceptScore W4280578051C105795698 @default.
- W4280578051 hasConceptScore W4280578051C114775468 @default.
- W4280578051 hasConceptScore W4280578051C119857082 @default.
- W4280578051 hasConceptScore W4280578051C121332964 @default.
- W4280578051 hasConceptScore W4280578051C126980161 @default.
- W4280578051 hasConceptScore W4280578051C138885662 @default.
- W4280578051 hasConceptScore W4280578051C148483581 @default.
- W4280578051 hasConceptScore W4280578051C151406439 @default.
- W4280578051 hasConceptScore W4280578051C153180895 @default.
- W4280578051 hasConceptScore W4280578051C154945302 @default.
- W4280578051 hasConceptScore W4280578051C24338571 @default.
- W4280578051 hasConceptScore W4280578051C2776401178 @default.
- W4280578051 hasConceptScore W4280578051C33923547 @default.
- W4280578051 hasConceptScore W4280578051C41008148 @default.
- W4280578051 hasConceptScore W4280578051C41895202 @default.
- W4280578051 hasConceptScore W4280578051C50644808 @default.
- W4280578051 hasConceptScore W4280578051C5297727 @default.
- W4280578051 hasConceptScore W4280578051C61797465 @default.
- W4280578051 hasConceptScore W4280578051C62520636 @default.
- W4280578051 hasConceptScore W4280578051C85617194 @default.
- W4280578051 hasConceptScore W4280578051C8642999 @default.
- W4280578051 hasLocation W42805780511 @default.
- W4280578051 hasOpenAccess W4280578051 @default.
- W4280578051 hasPrimaryLocation W42805780511 @default.
- W4280578051 hasRelatedWork W2001166152 @default.
- W4280578051 hasRelatedWork W2379272596 @default.
- W4280578051 hasRelatedWork W3199608561 @default.
- W4280578051 hasRelatedWork W4210794429 @default.
- W4280578051 hasRelatedWork W4223456145 @default.
- W4280578051 hasRelatedWork W4281783320 @default.
- W4280578051 hasRelatedWork W4293525103 @default.
- W4280578051 hasRelatedWork W4295309597 @default.
- W4280578051 hasRelatedWork W4309113015 @default.
- W4280578051 hasRelatedWork W2623457030 @default.
- W4280578051 hasVolume "2022" @default.
- W4280578051 isParatext "false" @default.