Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280578375> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4280578375 endingPage "170" @default.
- W4280578375 startingPage "160" @default.
- W4280578375 abstract "Hispathological image segmentation algorithms play a critical role in computer aided diagnosis technology. The development of weakly supervised segmentation algorithm alleviates the problem of medical image annotation that it is time-consuming and labor-intensive. As a subset of weakly supervised learning, Multiple Instance Learning (MIL) has been proven to be effective in segmentation. However, there is a lack of related information between instances in MIL, which limits the further improvement of segmentation performance. In this paper, we propose a novel weakly supervised method for pixel-level segmentation in histopathology images, which introduces Transformer into the MIL framework to capture global or long-range dependencies. The multi-head self-attention in the Transformer establishes the relationship between instances, which solves the shortcoming that instances are independent of each other in MIL. In addition, deep supervision is introduced to overcome the limitation of annotations in weakly supervised methods and make the better utilization of hierarchical information. The state-of-the-art results on the colon cancer dataset demonstrate the superiority of the proposed method compared with other weakly supervised methods. It is worth believing that there is a potential of our approach for various applications in medical images." @default.
- W4280578375 created "2022-05-22" @default.
- W4280578375 creator A5026812255 @default.
- W4280578375 creator A5058794879 @default.
- W4280578375 creator A5065079026 @default.
- W4280578375 creator A5065305411 @default.
- W4280578375 creator A5083440332 @default.
- W4280578375 creator A5087298985 @default.
- W4280578375 creator A5087371112 @default.
- W4280578375 date "2022-01-01" @default.
- W4280578375 modified "2023-10-15" @default.
- W4280578375 title "Transformer Based Multiple Instance Learning for Weakly Supervised Histopathology Image Segmentation" @default.
- W4280578375 cites W1901129140 @default.
- W4280578375 cites W2098140880 @default.
- W4280578375 cites W2110119381 @default.
- W4280578375 cites W2295107390 @default.
- W4280578375 cites W2526942720 @default.
- W4280578375 cites W2746791238 @default.
- W4280578375 cites W2798376494 @default.
- W4280578375 cites W2963311325 @default.
- W4280578375 cites W2963803174 @default.
- W4280578375 cites W2980046504 @default.
- W4280578375 cites W2981689412 @default.
- W4280578375 cites W3034447539 @default.
- W4280578375 cites W3043535018 @default.
- W4280578375 cites W3106105822 @default.
- W4280578375 cites W3127262876 @default.
- W4280578375 cites W3138516171 @default.
- W4280578375 cites W3175722450 @default.
- W4280578375 cites W3201905155 @default.
- W4280578375 cites W3204146347 @default.
- W4280578375 doi "https://doi.org/10.1007/978-3-031-16434-7_16" @default.
- W4280578375 hasPublicationYear "2022" @default.
- W4280578375 type Work @default.
- W4280578375 citedByCount "9" @default.
- W4280578375 countsByYear W42805783752022 @default.
- W4280578375 countsByYear W42805783752023 @default.
- W4280578375 crossrefType "book-chapter" @default.
- W4280578375 hasAuthorship W4280578375A5026812255 @default.
- W4280578375 hasAuthorship W4280578375A5058794879 @default.
- W4280578375 hasAuthorship W4280578375A5065079026 @default.
- W4280578375 hasAuthorship W4280578375A5065305411 @default.
- W4280578375 hasAuthorship W4280578375A5083440332 @default.
- W4280578375 hasAuthorship W4280578375A5087298985 @default.
- W4280578375 hasAuthorship W4280578375A5087371112 @default.
- W4280578375 hasBestOaLocation W42805783752 @default.
- W4280578375 hasConcept C119857082 @default.
- W4280578375 hasConcept C121332964 @default.
- W4280578375 hasConcept C124504099 @default.
- W4280578375 hasConcept C136389625 @default.
- W4280578375 hasConcept C153180895 @default.
- W4280578375 hasConcept C154945302 @default.
- W4280578375 hasConcept C165801399 @default.
- W4280578375 hasConcept C25694479 @default.
- W4280578375 hasConcept C41008148 @default.
- W4280578375 hasConcept C50644808 @default.
- W4280578375 hasConcept C62520636 @default.
- W4280578375 hasConcept C65885262 @default.
- W4280578375 hasConcept C66322947 @default.
- W4280578375 hasConcept C89600930 @default.
- W4280578375 hasConceptScore W4280578375C119857082 @default.
- W4280578375 hasConceptScore W4280578375C121332964 @default.
- W4280578375 hasConceptScore W4280578375C124504099 @default.
- W4280578375 hasConceptScore W4280578375C136389625 @default.
- W4280578375 hasConceptScore W4280578375C153180895 @default.
- W4280578375 hasConceptScore W4280578375C154945302 @default.
- W4280578375 hasConceptScore W4280578375C165801399 @default.
- W4280578375 hasConceptScore W4280578375C25694479 @default.
- W4280578375 hasConceptScore W4280578375C41008148 @default.
- W4280578375 hasConceptScore W4280578375C50644808 @default.
- W4280578375 hasConceptScore W4280578375C62520636 @default.
- W4280578375 hasConceptScore W4280578375C65885262 @default.
- W4280578375 hasConceptScore W4280578375C66322947 @default.
- W4280578375 hasConceptScore W4280578375C89600930 @default.
- W4280578375 hasLocation W42805783751 @default.
- W4280578375 hasLocation W42805783752 @default.
- W4280578375 hasOpenAccess W4280578375 @default.
- W4280578375 hasPrimaryLocation W42805783751 @default.
- W4280578375 hasRelatedWork W1631910785 @default.
- W4280578375 hasRelatedWork W1974884835 @default.
- W4280578375 hasRelatedWork W1977295039 @default.
- W4280578375 hasRelatedWork W2344532017 @default.
- W4280578375 hasRelatedWork W2897195263 @default.
- W4280578375 hasRelatedWork W2948522034 @default.
- W4280578375 hasRelatedWork W3027204089 @default.
- W4280578375 hasRelatedWork W3121959641 @default.
- W4280578375 hasRelatedWork W3127804355 @default.
- W4280578375 hasRelatedWork W4361265312 @default.
- W4280578375 isParatext "false" @default.
- W4280578375 isRetracted "false" @default.
- W4280578375 workType "book-chapter" @default.