Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280586413> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4280586413 endingPage "117500" @default.
- W4280586413 startingPage "117500" @default.
- W4280586413 abstract "• In the study, a data set specific to SD-VANET architecture was obtained. • A novel systematic approach based on DDoS data is introduced. • Proposed model achieved 99.35% accuracy. • A comprehensive experimental benchmark is performed. The aim of Vehicular Ad Hoc Networks (VANETs) is to provide drivers and passengers with various applications and services for comfortable transportation by supporting traffic efficiency and safety. However, the traditional VANETs face various technical challenges in meeting the basic requirements of intelligent transportation systems such as scalability, flexibility and management due to the ever-increasing number of intelligent vehicles. With its flexible, programmable, scalable network structure, Software Defined Networks (SDNs) are candidates for providing solutions to the problems experienced. The architecture, which was created by adapting the SDN paradigm to the traditional VANET is simply called SD-VANET. This new architecture allows easy scaling of the network and flexible network management. Despite the advantages of SD-VANET architecture, it is also vulnerable to cyberattack threats such as Distributed Denial Of Service (DDoS). In this study, different machine learning classifiers were used to detect DDoS attacks targeting SD-VANETs. First, a dataset containing features of normal network traffic and DDoS attack network traffic was obtained from an experimentally created SD-VANET topology. Then the Minimum Redundancy Maximum Relevance (MRMR) feature selection algorithm was used to select the most distinctive features of the dataset. Machine learning classifiers were trained and tested with both original and feature selection applied datasets. Moreover, in the learning phase, hyperparameter optimization for the classifiers was applied using the Bayesian optimization method. According to the experimental results, the highest accuracy score obtained was 99.35% with MRMR feature selection and Bayesian optimization-based decision tree classifier. The results demonstrate that the MRMR feature selection and Bayesian optimization-based classifier approach have been successful for the detection of DDoS attacks on SD-VANETs." @default.
- W4280586413 created "2022-05-22" @default.
- W4280586413 creator A5009931828 @default.
- W4280586413 creator A5029891409 @default.
- W4280586413 creator A5042354008 @default.
- W4280586413 creator A5077647596 @default.
- W4280586413 date "2022-10-01" @default.
- W4280586413 modified "2023-09-27" @default.
- W4280586413 title "Recognition of DDoS attacks on SD-VANET based on combination of hyperparameter optimization and feature selection" @default.
- W4280586413 cites W2009385507 @default.
- W4280586413 cites W2154053567 @default.
- W4280586413 cites W2475596014 @default.
- W4280586413 cites W2799843691 @default.
- W4280586413 cites W2915905517 @default.
- W4280586413 cites W2919121218 @default.
- W4280586413 cites W2950540448 @default.
- W4280586413 cites W2989255594 @default.
- W4280586413 cites W2998727463 @default.
- W4280586413 cites W2999113954 @default.
- W4280586413 cites W2999349798 @default.
- W4280586413 cites W3021340023 @default.
- W4280586413 cites W3034595728 @default.
- W4280586413 cites W3036012999 @default.
- W4280586413 cites W3039439473 @default.
- W4280586413 cites W3042433202 @default.
- W4280586413 cites W3045583938 @default.
- W4280586413 cites W3051224703 @default.
- W4280586413 cites W3090510669 @default.
- W4280586413 cites W3095169296 @default.
- W4280586413 cites W3114263020 @default.
- W4280586413 cites W3117819143 @default.
- W4280586413 cites W3125461270 @default.
- W4280586413 cites W3126855403 @default.
- W4280586413 doi "https://doi.org/10.1016/j.eswa.2022.117500" @default.
- W4280586413 hasPublicationYear "2022" @default.
- W4280586413 type Work @default.
- W4280586413 citedByCount "14" @default.
- W4280586413 countsByYear W42805864132022 @default.
- W4280586413 countsByYear W42805864132023 @default.
- W4280586413 crossrefType "journal-article" @default.
- W4280586413 hasAuthorship W4280586413A5009931828 @default.
- W4280586413 hasAuthorship W4280586413A5029891409 @default.
- W4280586413 hasAuthorship W4280586413A5042354008 @default.
- W4280586413 hasAuthorship W4280586413A5077647596 @default.
- W4280586413 hasConcept C110875604 @default.
- W4280586413 hasConcept C119857082 @default.
- W4280586413 hasConcept C136764020 @default.
- W4280586413 hasConcept C148483581 @default.
- W4280586413 hasConcept C153180895 @default.
- W4280586413 hasConcept C154945302 @default.
- W4280586413 hasConcept C38822068 @default.
- W4280586413 hasConcept C41008148 @default.
- W4280586413 hasConcept C81917197 @default.
- W4280586413 hasConcept C8642999 @default.
- W4280586413 hasConceptScore W4280586413C110875604 @default.
- W4280586413 hasConceptScore W4280586413C119857082 @default.
- W4280586413 hasConceptScore W4280586413C136764020 @default.
- W4280586413 hasConceptScore W4280586413C148483581 @default.
- W4280586413 hasConceptScore W4280586413C153180895 @default.
- W4280586413 hasConceptScore W4280586413C154945302 @default.
- W4280586413 hasConceptScore W4280586413C38822068 @default.
- W4280586413 hasConceptScore W4280586413C41008148 @default.
- W4280586413 hasConceptScore W4280586413C81917197 @default.
- W4280586413 hasConceptScore W4280586413C8642999 @default.
- W4280586413 hasLocation W42805864131 @default.
- W4280586413 hasOpenAccess W4280586413 @default.
- W4280586413 hasPrimaryLocation W42805864131 @default.
- W4280586413 hasRelatedWork W3199608561 @default.
- W4280586413 hasRelatedWork W3210877509 @default.
- W4280586413 hasRelatedWork W4210794429 @default.
- W4280586413 hasRelatedWork W4212852473 @default.
- W4280586413 hasRelatedWork W4223456145 @default.
- W4280586413 hasRelatedWork W4225360065 @default.
- W4280586413 hasRelatedWork W4280535922 @default.
- W4280586413 hasRelatedWork W4285298034 @default.
- W4280586413 hasRelatedWork W4295309597 @default.
- W4280586413 hasRelatedWork W4309113015 @default.
- W4280586413 hasVolume "203" @default.
- W4280586413 isParatext "false" @default.
- W4280586413 isRetracted "false" @default.
- W4280586413 workType "article" @default.