Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280588005> ?p ?o ?g. }
- W4280588005 endingPage "705" @default.
- W4280588005 startingPage "705" @default.
- W4280588005 abstract "With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to improve the accuracy by enhancing the generalization of features. A Multi-Classifier Fusion method based on mutual information with sequential forward floating selection (MI_SFFS) is proposed. The dataset used in this paper is DEAP, which is a multi-modal open dataset containing 32 EEG channels and multiple other physiological signals. First, high-dimensional features are extracted from 15 EEG channels of DEAP after using a 10 s time window for data slicing. Second, MI and SFFS are integrated as a novel feature-selection method. Then, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) are employed to classify positive and negative emotions to obtain the output probabilities of classifiers as weighted features for further classification. To evaluate the model performance, leave-one-out cross-validation is adopted. Finally, cross-subject classification accuracies of 0.7089, 0.7106 and 0.7361 are achieved by the SVM, KNN and RF classifiers, respectively. The results demonstrate the feasibility of the model by splicing different classifiers’ output probabilities as a portion of the weighted features." @default.
- W4280588005 created "2022-05-22" @default.
- W4280588005 creator A5023578276 @default.
- W4280588005 creator A5075400768 @default.
- W4280588005 creator A5078505993 @default.
- W4280588005 creator A5078883369 @default.
- W4280588005 date "2022-05-16" @default.
- W4280588005 modified "2023-09-27" @default.
- W4280588005 title "Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition" @default.
- W4280588005 cites W1947251450 @default.
- W4280588005 cites W2002055708 @default.
- W4280588005 cites W2004886609 @default.
- W4280588005 cites W2014915963 @default.
- W4280588005 cites W2081420711 @default.
- W4280588005 cites W2082756343 @default.
- W4280588005 cites W2112735526 @default.
- W4280588005 cites W2120945046 @default.
- W4280588005 cites W2134602648 @default.
- W4280588005 cites W2230936439 @default.
- W4280588005 cites W2461134574 @default.
- W4280588005 cites W2467010667 @default.
- W4280588005 cites W2523525429 @default.
- W4280588005 cites W2749183303 @default.
- W4280588005 cites W2762323924 @default.
- W4280588005 cites W2790814155 @default.
- W4280588005 cites W2800276980 @default.
- W4280588005 cites W2810302362 @default.
- W4280588005 cites W2885481778 @default.
- W4280588005 cites W2889105179 @default.
- W4280588005 cites W2889818663 @default.
- W4280588005 cites W2899584839 @default.
- W4280588005 cites W2903462437 @default.
- W4280588005 cites W2903655844 @default.
- W4280588005 cites W2907371384 @default.
- W4280588005 cites W2910086092 @default.
- W4280588005 cites W2912733907 @default.
- W4280588005 cites W2920980526 @default.
- W4280588005 cites W2962905870 @default.
- W4280588005 cites W2963009172 @default.
- W4280588005 cites W2964346239 @default.
- W4280588005 cites W2991465589 @default.
- W4280588005 cites W3003908700 @default.
- W4280588005 cites W3008243996 @default.
- W4280588005 cites W3025334394 @default.
- W4280588005 cites W3030394593 @default.
- W4280588005 cites W3041169178 @default.
- W4280588005 cites W3043942984 @default.
- W4280588005 cites W3080946082 @default.
- W4280588005 cites W3083218890 @default.
- W4280588005 cites W3091907675 @default.
- W4280588005 cites W3095123550 @default.
- W4280588005 cites W3099884890 @default.
- W4280588005 cites W3100981093 @default.
- W4280588005 cites W3120598210 @default.
- W4280588005 cites W3124849971 @default.
- W4280588005 cites W3125908420 @default.
- W4280588005 cites W3129610754 @default.
- W4280588005 cites W3137043336 @default.
- W4280588005 cites W3149101596 @default.
- W4280588005 cites W3150499614 @default.
- W4280588005 cites W3179547076 @default.
- W4280588005 cites W3189300284 @default.
- W4280588005 cites W3191630664 @default.
- W4280588005 cites W3203836316 @default.
- W4280588005 cites W3205437075 @default.
- W4280588005 cites W1995560952 @default.
- W4280588005 doi "https://doi.org/10.3390/e24050705" @default.
- W4280588005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35626587" @default.
- W4280588005 hasPublicationYear "2022" @default.
- W4280588005 type Work @default.
- W4280588005 citedByCount "4" @default.
- W4280588005 countsByYear W42805880052022 @default.
- W4280588005 countsByYear W42805880052023 @default.
- W4280588005 crossrefType "journal-article" @default.
- W4280588005 hasAuthorship W4280588005A5023578276 @default.
- W4280588005 hasAuthorship W4280588005A5075400768 @default.
- W4280588005 hasAuthorship W4280588005A5078505993 @default.
- W4280588005 hasAuthorship W4280588005A5078883369 @default.
- W4280588005 hasBestOaLocation W42805880051 @default.
- W4280588005 hasConcept C118552586 @default.
- W4280588005 hasConcept C119857082 @default.
- W4280588005 hasConcept C12267149 @default.
- W4280588005 hasConcept C148483581 @default.
- W4280588005 hasConcept C152139883 @default.
- W4280588005 hasConcept C153180895 @default.
- W4280588005 hasConcept C154945302 @default.
- W4280588005 hasConcept C15744967 @default.
- W4280588005 hasConcept C169258074 @default.
- W4280588005 hasConcept C206310091 @default.
- W4280588005 hasConcept C27181475 @default.
- W4280588005 hasConcept C28490314 @default.
- W4280588005 hasConcept C41008148 @default.
- W4280588005 hasConcept C522805319 @default.
- W4280588005 hasConcept C95623464 @default.
- W4280588005 hasConceptScore W4280588005C118552586 @default.
- W4280588005 hasConceptScore W4280588005C119857082 @default.
- W4280588005 hasConceptScore W4280588005C12267149 @default.
- W4280588005 hasConceptScore W4280588005C148483581 @default.