Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280593015> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4280593015 endingPage "704" @default.
- W4280593015 startingPage "688" @default.
- W4280593015 abstract "Continuous generating grinding plays an essential role in modern gear manufacturing, while the increasing need for high-quality gear products pushes the quality control of the grinding process. This paper proposed a vibration-based process monitoring method to classify faults generated during grinding processes. Gear grinding measurements have been conducted during experiments with different parameters of the feed rate, infeed, and gear eccentricity. The grinding vibration signals have been gathered to form a dataset with seven gear quality categories. A novel deep learning model is presented in this paper exploiting the power of Wavelet Packet Decomposition (WPD) and Deep Convolutional Neural Network (DCNN). The WPD is adopted to transform the vibration signal into 2D time-frequency representations, used as inputs to the DCNN model for classification. Experimental results show that, the proposed DCNN can achieve a high classification accuracy of 95.83%, demonstrating the methodology's efficiency. In addition, this paper exploits the Gradient-weighted Class Activation Map (Grad-CAM) technique to interpret the deep neural network's decisions in order to facilitate the model deployment in industrial production. The Grad-CAM visualizations are utilized to show the activation regions on the spectrograms, which further indicate that the attentions of the DCNN have a strong correlation with the manufacturing parameters of different grinding passes." @default.
- W4280593015 created "2022-05-22" @default.
- W4280593015 creator A5064430862 @default.
- W4280593015 creator A5064722162 @default.
- W4280593015 creator A5071338745 @default.
- W4280593015 creator A5074325681 @default.
- W4280593015 date "2022-07-01" @default.
- W4280593015 modified "2023-10-14" @default.
- W4280593015 title "Vibration-based gear continuous generating grinding fault classification and interpretation with deep convolutional neural network" @default.
- W4280593015 cites W1694307164 @default.
- W4280593015 cites W2021758955 @default.
- W4280593015 cites W2048399281 @default.
- W4280593015 cites W2064736393 @default.
- W4280593015 cites W2092034898 @default.
- W4280593015 cites W2170505850 @default.
- W4280593015 cites W2213473415 @default.
- W4280593015 cites W2290121379 @default.
- W4280593015 cites W2614046174 @default.
- W4280593015 cites W2886320134 @default.
- W4280593015 cites W2969360035 @default.
- W4280593015 doi "https://doi.org/10.1016/j.jmapro.2022.04.068" @default.
- W4280593015 hasPublicationYear "2022" @default.
- W4280593015 type Work @default.
- W4280593015 citedByCount "5" @default.
- W4280593015 countsByYear W42805930152022 @default.
- W4280593015 countsByYear W42805930152023 @default.
- W4280593015 crossrefType "journal-article" @default.
- W4280593015 hasAuthorship W4280593015A5064430862 @default.
- W4280593015 hasAuthorship W4280593015A5064722162 @default.
- W4280593015 hasAuthorship W4280593015A5071338745 @default.
- W4280593015 hasAuthorship W4280593015A5074325681 @default.
- W4280593015 hasConcept C121332964 @default.
- W4280593015 hasConcept C127313418 @default.
- W4280593015 hasConcept C127413603 @default.
- W4280593015 hasConcept C153180895 @default.
- W4280593015 hasConcept C154945302 @default.
- W4280593015 hasConcept C155777637 @default.
- W4280593015 hasConcept C165205528 @default.
- W4280593015 hasConcept C175551986 @default.
- W4280593015 hasConcept C196216189 @default.
- W4280593015 hasConcept C198394728 @default.
- W4280593015 hasConcept C199360897 @default.
- W4280593015 hasConcept C24890656 @default.
- W4280593015 hasConcept C2777571299 @default.
- W4280593015 hasConcept C2779843651 @default.
- W4280593015 hasConcept C41008148 @default.
- W4280593015 hasConcept C47432892 @default.
- W4280593015 hasConcept C50644808 @default.
- W4280593015 hasConcept C78519656 @default.
- W4280593015 hasConcept C81363708 @default.
- W4280593015 hasConceptScore W4280593015C121332964 @default.
- W4280593015 hasConceptScore W4280593015C127313418 @default.
- W4280593015 hasConceptScore W4280593015C127413603 @default.
- W4280593015 hasConceptScore W4280593015C153180895 @default.
- W4280593015 hasConceptScore W4280593015C154945302 @default.
- W4280593015 hasConceptScore W4280593015C155777637 @default.
- W4280593015 hasConceptScore W4280593015C165205528 @default.
- W4280593015 hasConceptScore W4280593015C175551986 @default.
- W4280593015 hasConceptScore W4280593015C196216189 @default.
- W4280593015 hasConceptScore W4280593015C198394728 @default.
- W4280593015 hasConceptScore W4280593015C199360897 @default.
- W4280593015 hasConceptScore W4280593015C24890656 @default.
- W4280593015 hasConceptScore W4280593015C2777571299 @default.
- W4280593015 hasConceptScore W4280593015C2779843651 @default.
- W4280593015 hasConceptScore W4280593015C41008148 @default.
- W4280593015 hasConceptScore W4280593015C47432892 @default.
- W4280593015 hasConceptScore W4280593015C50644808 @default.
- W4280593015 hasConceptScore W4280593015C78519656 @default.
- W4280593015 hasConceptScore W4280593015C81363708 @default.
- W4280593015 hasLocation W42805930151 @default.
- W4280593015 hasOpenAccess W4280593015 @default.
- W4280593015 hasPrimaryLocation W42805930151 @default.
- W4280593015 hasRelatedWork W2034217055 @default.
- W4280593015 hasRelatedWork W2084897638 @default.
- W4280593015 hasRelatedWork W2109294691 @default.
- W4280593015 hasRelatedWork W2349185321 @default.
- W4280593015 hasRelatedWork W2352072136 @default.
- W4280593015 hasRelatedWork W2363582487 @default.
- W4280593015 hasRelatedWork W2370072126 @default.
- W4280593015 hasRelatedWork W2767651786 @default.
- W4280593015 hasRelatedWork W2912288872 @default.
- W4280593015 hasRelatedWork W3150947335 @default.
- W4280593015 hasVolume "79" @default.
- W4280593015 isParatext "false" @default.
- W4280593015 isRetracted "false" @default.
- W4280593015 workType "article" @default.