Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280593553> ?p ?o ?g. }
- W4280593553 endingPage "1940" @default.
- W4280593553 startingPage "1925" @default.
- W4280593553 abstract "Extreme Mei-yu rainfall (MYR) can cause catastrophic impacts to the economic development and societal welfare in China. While significant improvements have been made in climate models, they often struggle to simulate local-to-regional extreme rainfall (e.g., MYR). Yet, large-scale climate modes (LSCMs) are relatively well represented in climate models. Since there exists a close relationship between MYR and various LSCMs, it might be possible to develop causality-guided statistical models for MYR prediction based on LSCMs. These statistical models could then be applied to climate model simulations to improve the representation of MYR in climate models. In this pilot study, it is demonstrated that skillful causality-guided statistical models for MYR can be constructed based on known LSCMs. The relevancy of the selected predictors for statistical models are found to be consistent with the literature. The importance of temporal resolution in constructing statistical models for MYR is also shown and is in good agreement with the literature. The results demonstrate the reliability of the causality-guided approach in studying complex circulation systems such as the East Asian summer monsoon (EASM). Some limitations and possible improvements of the current approach are discussed. The application of the causality-guided approach opens up a new possibility to uncover the complex interactions in the EASM in future studies.极端梅雨降雨 (MYR) 会对中国的社会和经济发展造成灾难性影响. 尽管气候模型在模拟气候上已有重要进展, 但这些模型通常难以模拟局部到区域的极端降雨过程(例如, 极端梅雨降雨). 目前来说, 气候模型能较好地模拟大尺度气候模式(LSCM). 由于 极端梅雨降雨 与不同的 大尺度气候模式 之间存在密切关系, 因此, 我们有可能基于大尺度气候模式来构建因果关系引导的数据模型. 该数据模型有望应用于气候模型的模拟以改善其在模拟极端梅雨降雨中的表现. 在此探索性研究中, 我们证明了基于因果关系引导方法的数据模型可以通过已知的大尺度气候模式来建立, 并有效模拟极端梅雨降雨. 该统计模型內的预测变量的相关性以及时间分辨率的重要性都与文献一致. 该研究结果证实了因果关系引导方法在研究东亚夏季风 (EASM) 等复杂环流系统中的可靠性. 本文也讨论了当前方法的一些局限性和可能的改进方法. 因果关系引导方法的应用为未来研究复杂的东亚夏季风中的相互作用开辟了新的可能性." @default.
- W4280593553 created "2022-05-22" @default.
- W4280593553 creator A5010981144 @default.
- W4280593553 creator A5043415290 @default.
- W4280593553 creator A5048503788 @default.
- W4280593553 date "2022-05-14" @default.
- W4280593553 modified "2023-09-25" @default.
- W4280593553 title "A Causality-guided Statistical Approach for Modeling Extreme Mei-yu Rainfall Based on Known Large-scale Modes—A Pilot Study" @default.
- W4280593553 cites W1494292928 @default.
- W4280593553 cites W1504657038 @default.
- W4280593553 cites W1639692538 @default.
- W4280593553 cites W1827461051 @default.
- W4280593553 cites W1956875444 @default.
- W4280593553 cites W1970212762 @default.
- W4280593553 cites W1988367356 @default.
- W4280593553 cites W1991141689 @default.
- W4280593553 cites W2006554524 @default.
- W4280593553 cites W2011425404 @default.
- W4280593553 cites W2016564866 @default.
- W4280593553 cites W2017061522 @default.
- W4280593553 cites W2019255172 @default.
- W4280593553 cites W2034326114 @default.
- W4280593553 cites W2034882391 @default.
- W4280593553 cites W2045637772 @default.
- W4280593553 cites W2051693931 @default.
- W4280593553 cites W2053985856 @default.
- W4280593553 cites W2055286644 @default.
- W4280593553 cites W2070922554 @default.
- W4280593553 cites W2077108583 @default.
- W4280593553 cites W2082001988 @default.
- W4280593553 cites W2090633713 @default.
- W4280593553 cites W2092497323 @default.
- W4280593553 cites W2115180998 @default.
- W4280593553 cites W2127635108 @default.
- W4280593553 cites W2139158993 @default.
- W4280593553 cites W2139683168 @default.
- W4280593553 cites W2141165467 @default.
- W4280593553 cites W2142021968 @default.
- W4280593553 cites W2147289595 @default.
- W4280593553 cites W2155718483 @default.
- W4280593553 cites W2255002787 @default.
- W4280593553 cites W2258178957 @default.
- W4280593553 cites W2288320689 @default.
- W4280593553 cites W2317063159 @default.
- W4280593553 cites W2326655560 @default.
- W4280593553 cites W2331866776 @default.
- W4280593553 cites W2338046588 @default.
- W4280593553 cites W2555839191 @default.
- W4280593553 cites W2602786242 @default.
- W4280593553 cites W2610670795 @default.
- W4280593553 cites W2734802511 @default.
- W4280593553 cites W2740599913 @default.
- W4280593553 cites W2757187242 @default.
- W4280593553 cites W2920941670 @default.
- W4280593553 cites W2949505632 @default.
- W4280593553 cites W2963459855 @default.
- W4280593553 cites W2992851455 @default.
- W4280593553 cites W3009252637 @default.
- W4280593553 cites W3019375295 @default.
- W4280593553 cites W3025949386 @default.
- W4280593553 cites W3080186842 @default.
- W4280593553 cites W3080533642 @default.
- W4280593553 cites W3100799791 @default.
- W4280593553 cites W3101150805 @default.
- W4280593553 cites W3131754075 @default.
- W4280593553 cites W3134280562 @default.
- W4280593553 cites W3198858771 @default.
- W4280593553 cites W4302423442 @default.
- W4280593553 doi "https://doi.org/10.1007/s00376-022-1348-3" @default.
- W4280593553 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35601396" @default.
- W4280593553 hasPublicationYear "2022" @default.
- W4280593553 type Work @default.
- W4280593553 citedByCount "0" @default.
- W4280593553 crossrefType "journal-article" @default.
- W4280593553 hasAuthorship W4280593553A5010981144 @default.
- W4280593553 hasAuthorship W4280593553A5043415290 @default.
- W4280593553 hasAuthorship W4280593553A5048503788 @default.
- W4280593553 hasBestOaLocation W42805935531 @default.
- W4280593553 hasConcept C104317684 @default.
- W4280593553 hasConcept C111368507 @default.
- W4280593553 hasConcept C114289077 @default.
- W4280593553 hasConcept C119857082 @default.
- W4280593553 hasConcept C121332964 @default.
- W4280593553 hasConcept C127313418 @default.
- W4280593553 hasConcept C132651083 @default.
- W4280593553 hasConcept C141231307 @default.
- W4280593553 hasConcept C168754636 @default.
- W4280593553 hasConcept C185592680 @default.
- W4280593553 hasConcept C205649164 @default.
- W4280593553 hasConcept C24389824 @default.
- W4280593553 hasConcept C2778755073 @default.
- W4280593553 hasConcept C39432304 @default.
- W4280593553 hasConcept C41008148 @default.
- W4280593553 hasConcept C49204034 @default.
- W4280593553 hasConcept C55493867 @default.
- W4280593553 hasConcept C58640448 @default.
- W4280593553 hasConcept C62520636 @default.
- W4280593553 hasConcept C64357122 @default.