Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280594023> ?p ?o ?g. }
- W4280594023 abstract "Abstract Background Segmenting brain tumor and its constituent regions from magnetic resonance images (MRI) is important for planning diagnosis and treatment. In clinical routine often an experienced radiologist delineates the tumor regions using multimodal MRI. But this manual segmentation is prone to poor reproducibility and is time consuming. Also, routine clinical scans are usually of low resolution. To overcome these limitations an automated and precise segmentation algorithm based on computer vision is needed. Methods We investigated the performance of three widely used segmentation methods namely region growing, fuzzy C means and deep neural networks (deepmedic). We evaluated these algorithms on the BRATS 2018 dataset by choosing randomly 48 patients data (high grade, n = 24 and low grade, n = 24) and on our routine clinical MRI brain tumor dataset (high grade, n = 15 and low grade, n = 28). We measured their performance using dice similarity coefficient, Hausdorff distance and volume measures. Results Region growing method performed very poorly when compared to fuzzy C means (FCM) and deepmedic network. Dice similarity coefficient scores for FCM and deepmedic algorithms were close to each other for BRATS and clinical dataset. The accuracy was below 70% for both these methods in general. Conclusion Even though the deepmedic network showed very high accuracy in BRATS challenge for brain tumor segmentation, it has to be custom trained for the low resolution routine clinical scans. It also requires large training data to be used as a stand-alone algorithm for clinical applications. Nevertheless deepmedic may be a better algorithm for brain tumor segmentation when compared to region growing or FCM." @default.
- W4280594023 created "2022-05-22" @default.
- W4280594023 creator A5020161024 @default.
- W4280594023 creator A5032932479 @default.
- W4280594023 creator A5071012413 @default.
- W4280594023 creator A5073939538 @default.
- W4280594023 creator A5079491141 @default.
- W4280594023 date "2022-05-14" @default.
- W4280594023 modified "2023-10-18" @default.
- W4280594023 title "An optimal brain tumor segmentation algorithm for clinical MRI dataset with low resolution and non-contiguous slices" @default.
- W4280594023 cites W1641498739 @default.
- W4280594023 cites W1815337875 @default.
- W4280594023 cites W1884191083 @default.
- W4280594023 cites W1897243882 @default.
- W4280594023 cites W1909740415 @default.
- W4280594023 cites W1975051395 @default.
- W4280594023 cites W1993947467 @default.
- W4280594023 cites W2024354681 @default.
- W4280594023 cites W2028158228 @default.
- W4280594023 cites W2047482624 @default.
- W4280594023 cites W2051834273 @default.
- W4280594023 cites W2112796928 @default.
- W4280594023 cites W2116531017 @default.
- W4280594023 cites W2124960242 @default.
- W4280594023 cites W2127890285 @default.
- W4280594023 cites W2148216778 @default.
- W4280594023 cites W2154575706 @default.
- W4280594023 cites W2301358467 @default.
- W4280594023 cites W2323421288 @default.
- W4280594023 cites W2341678751 @default.
- W4280594023 cites W2366536035 @default.
- W4280594023 cites W2411033247 @default.
- W4280594023 cites W2474982400 @default.
- W4280594023 cites W2509838853 @default.
- W4280594023 cites W2751069891 @default.
- W4280594023 cites W2762559025 @default.
- W4280594023 cites W2799476711 @default.
- W4280594023 cites W2803760365 @default.
- W4280594023 cites W2892112970 @default.
- W4280594023 cites W2913928134 @default.
- W4280594023 cites W2962731543 @default.
- W4280594023 cites W2999417355 @default.
- W4280594023 cites W3007562589 @default.
- W4280594023 cites W3024745283 @default.
- W4280594023 cites W3086354526 @default.
- W4280594023 doi "https://doi.org/10.1186/s12880-022-00812-7" @default.
- W4280594023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35568820" @default.
- W4280594023 hasPublicationYear "2022" @default.
- W4280594023 type Work @default.
- W4280594023 citedByCount "3" @default.
- W4280594023 countsByYear W42805940232023 @default.
- W4280594023 crossrefType "journal-article" @default.
- W4280594023 hasAuthorship W4280594023A5020161024 @default.
- W4280594023 hasAuthorship W4280594023A5032932479 @default.
- W4280594023 hasAuthorship W4280594023A5071012413 @default.
- W4280594023 hasAuthorship W4280594023A5073939538 @default.
- W4280594023 hasAuthorship W4280594023A5079491141 @default.
- W4280594023 hasBestOaLocation W42805940231 @default.
- W4280594023 hasConcept C103278499 @default.
- W4280594023 hasConcept C11413529 @default.
- W4280594023 hasConcept C115961682 @default.
- W4280594023 hasConcept C124504099 @default.
- W4280594023 hasConcept C126838900 @default.
- W4280594023 hasConcept C127313418 @default.
- W4280594023 hasConcept C141898687 @default.
- W4280594023 hasConcept C143409427 @default.
- W4280594023 hasConcept C153180895 @default.
- W4280594023 hasConcept C154945302 @default.
- W4280594023 hasConcept C163892561 @default.
- W4280594023 hasConcept C3019883945 @default.
- W4280594023 hasConcept C3020199158 @default.
- W4280594023 hasConcept C41008148 @default.
- W4280594023 hasConcept C58166 @default.
- W4280594023 hasConcept C62649853 @default.
- W4280594023 hasConcept C71924100 @default.
- W4280594023 hasConcept C89600930 @default.
- W4280594023 hasConceptScore W4280594023C103278499 @default.
- W4280594023 hasConceptScore W4280594023C11413529 @default.
- W4280594023 hasConceptScore W4280594023C115961682 @default.
- W4280594023 hasConceptScore W4280594023C124504099 @default.
- W4280594023 hasConceptScore W4280594023C126838900 @default.
- W4280594023 hasConceptScore W4280594023C127313418 @default.
- W4280594023 hasConceptScore W4280594023C141898687 @default.
- W4280594023 hasConceptScore W4280594023C143409427 @default.
- W4280594023 hasConceptScore W4280594023C153180895 @default.
- W4280594023 hasConceptScore W4280594023C154945302 @default.
- W4280594023 hasConceptScore W4280594023C163892561 @default.
- W4280594023 hasConceptScore W4280594023C3019883945 @default.
- W4280594023 hasConceptScore W4280594023C3020199158 @default.
- W4280594023 hasConceptScore W4280594023C41008148 @default.
- W4280594023 hasConceptScore W4280594023C58166 @default.
- W4280594023 hasConceptScore W4280594023C62649853 @default.
- W4280594023 hasConceptScore W4280594023C71924100 @default.
- W4280594023 hasConceptScore W4280594023C89600930 @default.
- W4280594023 hasIssue "1" @default.
- W4280594023 hasLocation W42805940231 @default.
- W4280594023 hasLocation W42805940232 @default.
- W4280594023 hasLocation W42805940233 @default.
- W4280594023 hasLocation W42805940234 @default.
- W4280594023 hasOpenAccess W4280594023 @default.