Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280596951> ?p ?o ?g. }
- W4280596951 endingPage "101824" @default.
- W4280596951 startingPage "101824" @default.
- W4280596951 abstract "Social media platforms are playing increasingly critical roles in disaster response and rescue operations. During emergencies, users can post rescue requests along with their addresses on social media, while volunteers can search for those messages and send help. However, efficiently leveraging social media in rescue operations remains challenging because of the lack of tools to identify rescue request messages on social media automatically and rapidly. Analyzing social media data, such as Twitter data, relies heavily on Natural Language Processing (NLP) algorithms to extract information from texts. The introduction of bidirectional transformers models, such as the Bidirectional Encoder Representations from Transformers (BERT) model, has significantly outperformed previous NLP models in numerous text analysis tasks, providing new opportunities to precisely understand and classify social media data for diverse applications. This study developed and compared ten VictimFinder models for identifying rescue request tweets, three based on milestone NLP algorithms and seven BERT-based. A total of 3191 manually labeled disaster-related tweets posted during 2017 Hurricane Harvey were used as the training and testing datasets. We evaluated the performance of each model by classification accuracy, computation cost, and model stability. Experiment results show that all BERT-based models have significantly increased the accuracy of categorizing rescue-related tweets. The best model for identifying rescue request tweets is a customized BERT-based model with a Convolutional Neural Network (CNN) classifier. Its F1-score is 0.919, which outperforms the baseline model by 10.6%. The developed models can promote social media use for rescue operations in future disaster events." @default.
- W4280596951 created "2022-05-22" @default.
- W4280596951 creator A5018590807 @default.
- W4280596951 creator A5023165780 @default.
- W4280596951 creator A5044119067 @default.
- W4280596951 creator A5045627167 @default.
- W4280596951 creator A5048890418 @default.
- W4280596951 creator A5054121030 @default.
- W4280596951 creator A5077255312 @default.
- W4280596951 creator A5082365228 @default.
- W4280596951 creator A5084127910 @default.
- W4280596951 date "2022-07-01" @default.
- W4280596951 modified "2023-10-18" @default.
- W4280596951 title "VictimFinder: Harvesting rescue requests in disaster response from social media with BERT" @default.
- W4280596951 cites W1689711448 @default.
- W4280596951 cites W1969495697 @default.
- W4280596951 cites W1997102766 @default.
- W4280596951 cites W2028140375 @default.
- W4280596951 cites W2102222275 @default.
- W4280596951 cites W2112620321 @default.
- W4280596951 cites W2118020653 @default.
- W4280596951 cites W2141413155 @default.
- W4280596951 cites W2168627253 @default.
- W4280596951 cites W2215149882 @default.
- W4280596951 cites W2270070752 @default.
- W4280596951 cites W2298612130 @default.
- W4280596951 cites W2342933002 @default.
- W4280596951 cites W2410149101 @default.
- W4280596951 cites W2767074655 @default.
- W4280596951 cites W2770897355 @default.
- W4280596951 cites W2782616001 @default.
- W4280596951 cites W2789679082 @default.
- W4280596951 cites W2793222259 @default.
- W4280596951 cites W2902335761 @default.
- W4280596951 cites W2907164972 @default.
- W4280596951 cites W2912217870 @default.
- W4280596951 cites W2964751341 @default.
- W4280596951 cites W3007539386 @default.
- W4280596951 cites W3024097351 @default.
- W4280596951 cites W3042483694 @default.
- W4280596951 doi "https://doi.org/10.1016/j.compenvurbsys.2022.101824" @default.
- W4280596951 hasPublicationYear "2022" @default.
- W4280596951 type Work @default.
- W4280596951 citedByCount "19" @default.
- W4280596951 countsByYear W42805969512022 @default.
- W4280596951 countsByYear W42805969512023 @default.
- W4280596951 crossrefType "journal-article" @default.
- W4280596951 hasAuthorship W4280596951A5018590807 @default.
- W4280596951 hasAuthorship W4280596951A5023165780 @default.
- W4280596951 hasAuthorship W4280596951A5044119067 @default.
- W4280596951 hasAuthorship W4280596951A5045627167 @default.
- W4280596951 hasAuthorship W4280596951A5048890418 @default.
- W4280596951 hasAuthorship W4280596951A5054121030 @default.
- W4280596951 hasAuthorship W4280596951A5077255312 @default.
- W4280596951 hasAuthorship W4280596951A5082365228 @default.
- W4280596951 hasAuthorship W4280596951A5084127910 @default.
- W4280596951 hasBestOaLocation W42805969511 @default.
- W4280596951 hasConcept C111919701 @default.
- W4280596951 hasConcept C118505674 @default.
- W4280596951 hasConcept C119599485 @default.
- W4280596951 hasConcept C119857082 @default.
- W4280596951 hasConcept C127413603 @default.
- W4280596951 hasConcept C136764020 @default.
- W4280596951 hasConcept C137293760 @default.
- W4280596951 hasConcept C148524875 @default.
- W4280596951 hasConcept C154945302 @default.
- W4280596951 hasConcept C165801399 @default.
- W4280596951 hasConcept C204321447 @default.
- W4280596951 hasConcept C2775935494 @default.
- W4280596951 hasConcept C41008148 @default.
- W4280596951 hasConcept C518677369 @default.
- W4280596951 hasConcept C66322947 @default.
- W4280596951 hasConcept C90509273 @default.
- W4280596951 hasConcept C95623464 @default.
- W4280596951 hasConceptScore W4280596951C111919701 @default.
- W4280596951 hasConceptScore W4280596951C118505674 @default.
- W4280596951 hasConceptScore W4280596951C119599485 @default.
- W4280596951 hasConceptScore W4280596951C119857082 @default.
- W4280596951 hasConceptScore W4280596951C127413603 @default.
- W4280596951 hasConceptScore W4280596951C136764020 @default.
- W4280596951 hasConceptScore W4280596951C137293760 @default.
- W4280596951 hasConceptScore W4280596951C148524875 @default.
- W4280596951 hasConceptScore W4280596951C154945302 @default.
- W4280596951 hasConceptScore W4280596951C165801399 @default.
- W4280596951 hasConceptScore W4280596951C204321447 @default.
- W4280596951 hasConceptScore W4280596951C2775935494 @default.
- W4280596951 hasConceptScore W4280596951C41008148 @default.
- W4280596951 hasConceptScore W4280596951C518677369 @default.
- W4280596951 hasConceptScore W4280596951C66322947 @default.
- W4280596951 hasConceptScore W4280596951C90509273 @default.
- W4280596951 hasConceptScore W4280596951C95623464 @default.
- W4280596951 hasFunder F4320306076 @default.
- W4280596951 hasFunder F4320310164 @default.
- W4280596951 hasLocation W42805969511 @default.
- W4280596951 hasOpenAccess W4280596951 @default.
- W4280596951 hasPrimaryLocation W42805969511 @default.
- W4280596951 hasRelatedWork W3023944410 @default.
- W4280596951 hasRelatedWork W3042381743 @default.