Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280598357> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4280598357 abstract "In the human body, kidney clears the waste from the body and maintains vigorous balance between salt, water, and minerals in human body. The misbalancing between these leads to disturbance of normal functions of human body. Chronic kidney disease is a condition presenting the damage occurred in the normal functioning of kidneys. Early detection of chronic kidney disease helps significantly preventing severe kidney damage. The advancements in information and communication technologies certainly improves health care services for individuals and societies. In recent years, artificial intelligence and machine learning have provided potential solution for solving complex problem in variety of sectors including health care. The aim of this study is to predict the choric kidney disease from the dataset taken from the UCI repository. The dataset contains 400 instances with 25 attributes including class variable. Four state-of-the-art supervised machine learning classifiers, i.e., XGBoost, decision tree, support vector machine, and K-Neighrest Neighbor are implemented and performance is evaluated. The result shows that the XGBoost classifier outperforms with 99% value for accuracy, 100% value for precision, 97% for recall and 98% value for F1-score. The study gives a direction to develop an automated computer-assisted system for chronic kidney disease prediction and diagnosis." @default.
- W4280598357 created "2022-05-22" @default.
- W4280598357 creator A5012261102 @default.
- W4280598357 creator A5019559313 @default.
- W4280598357 creator A5030860328 @default.
- W4280598357 creator A5066375740 @default.
- W4280598357 creator A5071535545 @default.
- W4280598357 date "2022-02-16" @default.
- W4280598357 modified "2023-09-23" @default.
- W4280598357 title "An Experimental Study and Performance Analysis of Supervised Machine Learning Algorithms for Prognosis of Chronic Kidney Disease" @default.
- W4280598357 cites W1780185704 @default.
- W4280598357 cites W2037855648 @default.
- W4280598357 cites W2104787607 @default.
- W4280598357 cites W2148239836 @default.
- W4280598357 cites W2244501064 @default.
- W4280598357 cites W2900940968 @default.
- W4280598357 cites W2903314155 @default.
- W4280598357 cites W2909205746 @default.
- W4280598357 cites W3004678548 @default.
- W4280598357 cites W3104386278 @default.
- W4280598357 cites W3117160760 @default.
- W4280598357 cites W3135528181 @default.
- W4280598357 cites W3143942749 @default.
- W4280598357 cites W3172921504 @default.
- W4280598357 cites W3178921142 @default.
- W4280598357 cites W3216249124 @default.
- W4280598357 cites W4241360754 @default.
- W4280598357 doi "https://doi.org/10.1109/iceeict53079.2022.9768478" @default.
- W4280598357 hasPublicationYear "2022" @default.
- W4280598357 type Work @default.
- W4280598357 citedByCount "1" @default.
- W4280598357 countsByYear W42805983572022 @default.
- W4280598357 crossrefType "proceedings-article" @default.
- W4280598357 hasAuthorship W4280598357A5012261102 @default.
- W4280598357 hasAuthorship W4280598357A5019559313 @default.
- W4280598357 hasAuthorship W4280598357A5030860328 @default.
- W4280598357 hasAuthorship W4280598357A5066375740 @default.
- W4280598357 hasAuthorship W4280598357A5071535545 @default.
- W4280598357 hasConcept C110083411 @default.
- W4280598357 hasConcept C11413529 @default.
- W4280598357 hasConcept C119857082 @default.
- W4280598357 hasConcept C12267149 @default.
- W4280598357 hasConcept C126322002 @default.
- W4280598357 hasConcept C142724271 @default.
- W4280598357 hasConcept C154945302 @default.
- W4280598357 hasConcept C160735492 @default.
- W4280598357 hasConcept C162324750 @default.
- W4280598357 hasConcept C2778653478 @default.
- W4280598357 hasConcept C2779134260 @default.
- W4280598357 hasConcept C41008148 @default.
- W4280598357 hasConcept C50522688 @default.
- W4280598357 hasConcept C71924100 @default.
- W4280598357 hasConcept C81669768 @default.
- W4280598357 hasConcept C84525736 @default.
- W4280598357 hasConcept C95623464 @default.
- W4280598357 hasConceptScore W4280598357C110083411 @default.
- W4280598357 hasConceptScore W4280598357C11413529 @default.
- W4280598357 hasConceptScore W4280598357C119857082 @default.
- W4280598357 hasConceptScore W4280598357C12267149 @default.
- W4280598357 hasConceptScore W4280598357C126322002 @default.
- W4280598357 hasConceptScore W4280598357C142724271 @default.
- W4280598357 hasConceptScore W4280598357C154945302 @default.
- W4280598357 hasConceptScore W4280598357C160735492 @default.
- W4280598357 hasConceptScore W4280598357C162324750 @default.
- W4280598357 hasConceptScore W4280598357C2778653478 @default.
- W4280598357 hasConceptScore W4280598357C2779134260 @default.
- W4280598357 hasConceptScore W4280598357C41008148 @default.
- W4280598357 hasConceptScore W4280598357C50522688 @default.
- W4280598357 hasConceptScore W4280598357C71924100 @default.
- W4280598357 hasConceptScore W4280598357C81669768 @default.
- W4280598357 hasConceptScore W4280598357C84525736 @default.
- W4280598357 hasConceptScore W4280598357C95623464 @default.
- W4280598357 hasLocation W42805983571 @default.
- W4280598357 hasOpenAccess W4280598357 @default.
- W4280598357 hasPrimaryLocation W42805983571 @default.
- W4280598357 hasRelatedWork W3127425528 @default.
- W4280598357 hasRelatedWork W3186233728 @default.
- W4280598357 hasRelatedWork W3204641204 @default.
- W4280598357 hasRelatedWork W4205958290 @default.
- W4280598357 hasRelatedWork W4226398573 @default.
- W4280598357 hasRelatedWork W4249229055 @default.
- W4280598357 hasRelatedWork W4280598357 @default.
- W4280598357 hasRelatedWork W4283016678 @default.
- W4280598357 hasRelatedWork W4308654587 @default.
- W4280598357 hasRelatedWork W4361795583 @default.
- W4280598357 isParatext "false" @default.
- W4280598357 isRetracted "false" @default.
- W4280598357 workType "article" @default.