Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280598451> ?p ?o ?g. }
- W4280598451 endingPage "103291" @default.
- W4280598451 startingPage "103291" @default.
- W4280598451 abstract "Multifidelity models attempt to reduce the computational effort by combining simulation models of different approximation quality and from different sources. Information fusion combines outputs from a model hierarchy in order to obtain efficient estimators for a quantity of interest. In this paper, information fusion is applied to reliability estimation. To this end, efficient multifidelity estimators for the probability of failure are developed by combining additive and multiplicative information fusion with importance sampling and importance splitting (notably the moving particles method). Importance sampling and importance splitting based multifidelity reliability estimators are compared focusing on relative error and coefficient of variation." @default.
- W4280598451 created "2022-05-22" @default.
- W4280598451 creator A5043979069 @default.
- W4280598451 creator A5061202522 @default.
- W4280598451 date "2022-07-01" @default.
- W4280598451 modified "2023-10-18" @default.
- W4280598451 title "On information fusion for reliability estimation with multifidelity models" @default.
- W4280598451 cites W1835030294 @default.
- W4280598451 cites W1835834635 @default.
- W4280598451 cites W1963049518 @default.
- W4280598451 cites W1985112216 @default.
- W4280598451 cites W1990109342 @default.
- W4280598451 cites W1999091229 @default.
- W4280598451 cites W2018342164 @default.
- W4280598451 cites W2023678279 @default.
- W4280598451 cites W2042188408 @default.
- W4280598451 cites W2044283475 @default.
- W4280598451 cites W2060887891 @default.
- W4280598451 cites W2109418004 @default.
- W4280598451 cites W2137511180 @default.
- W4280598451 cites W2150592616 @default.
- W4280598451 cites W2153740376 @default.
- W4280598451 cites W2163715525 @default.
- W4280598451 cites W2529348500 @default.
- W4280598451 cites W2791899144 @default.
- W4280598451 cites W2806370139 @default.
- W4280598451 cites W2811395263 @default.
- W4280598451 cites W2883540206 @default.
- W4280598451 cites W2944391226 @default.
- W4280598451 cites W3002223934 @default.
- W4280598451 cites W3106007913 @default.
- W4280598451 cites W3128651587 @default.
- W4280598451 doi "https://doi.org/10.1016/j.probengmech.2022.103291" @default.
- W4280598451 hasPublicationYear "2022" @default.
- W4280598451 type Work @default.
- W4280598451 citedByCount "4" @default.
- W4280598451 countsByYear W42805984512023 @default.
- W4280598451 crossrefType "journal-article" @default.
- W4280598451 hasAuthorship W4280598451A5043979069 @default.
- W4280598451 hasAuthorship W4280598451A5061202522 @default.
- W4280598451 hasBestOaLocation W42805984511 @default.
- W4280598451 hasConcept C105795698 @default.
- W4280598451 hasConcept C106131492 @default.
- W4280598451 hasConcept C111472728 @default.
- W4280598451 hasConcept C11413529 @default.
- W4280598451 hasConcept C121332964 @default.
- W4280598451 hasConcept C126255220 @default.
- W4280598451 hasConcept C134306372 @default.
- W4280598451 hasConcept C138885662 @default.
- W4280598451 hasConcept C140779682 @default.
- W4280598451 hasConcept C154945302 @default.
- W4280598451 hasConcept C158525013 @default.
- W4280598451 hasConcept C162324750 @default.
- W4280598451 hasConcept C163258240 @default.
- W4280598451 hasConcept C185429906 @default.
- W4280598451 hasConcept C19499675 @default.
- W4280598451 hasConcept C2779530757 @default.
- W4280598451 hasConcept C31170391 @default.
- W4280598451 hasConcept C31972630 @default.
- W4280598451 hasConcept C33923547 @default.
- W4280598451 hasConcept C33954974 @default.
- W4280598451 hasConcept C34447519 @default.
- W4280598451 hasConcept C41008148 @default.
- W4280598451 hasConcept C41895202 @default.
- W4280598451 hasConcept C42747912 @default.
- W4280598451 hasConcept C43214815 @default.
- W4280598451 hasConcept C52740198 @default.
- W4280598451 hasConcept C62520636 @default.
- W4280598451 hasConceptScore W4280598451C105795698 @default.
- W4280598451 hasConceptScore W4280598451C106131492 @default.
- W4280598451 hasConceptScore W4280598451C111472728 @default.
- W4280598451 hasConceptScore W4280598451C11413529 @default.
- W4280598451 hasConceptScore W4280598451C121332964 @default.
- W4280598451 hasConceptScore W4280598451C126255220 @default.
- W4280598451 hasConceptScore W4280598451C134306372 @default.
- W4280598451 hasConceptScore W4280598451C138885662 @default.
- W4280598451 hasConceptScore W4280598451C140779682 @default.
- W4280598451 hasConceptScore W4280598451C154945302 @default.
- W4280598451 hasConceptScore W4280598451C158525013 @default.
- W4280598451 hasConceptScore W4280598451C162324750 @default.
- W4280598451 hasConceptScore W4280598451C163258240 @default.
- W4280598451 hasConceptScore W4280598451C185429906 @default.
- W4280598451 hasConceptScore W4280598451C19499675 @default.
- W4280598451 hasConceptScore W4280598451C2779530757 @default.
- W4280598451 hasConceptScore W4280598451C31170391 @default.
- W4280598451 hasConceptScore W4280598451C31972630 @default.
- W4280598451 hasConceptScore W4280598451C33923547 @default.
- W4280598451 hasConceptScore W4280598451C33954974 @default.
- W4280598451 hasConceptScore W4280598451C34447519 @default.
- W4280598451 hasConceptScore W4280598451C41008148 @default.
- W4280598451 hasConceptScore W4280598451C41895202 @default.
- W4280598451 hasConceptScore W4280598451C42747912 @default.
- W4280598451 hasConceptScore W4280598451C43214815 @default.
- W4280598451 hasConceptScore W4280598451C52740198 @default.
- W4280598451 hasConceptScore W4280598451C62520636 @default.
- W4280598451 hasFunder F4320320879 @default.
- W4280598451 hasLocation W42805984511 @default.
- W4280598451 hasOpenAccess W4280598451 @default.