Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280610604> ?p ?o ?g. }
- W4280610604 endingPage "10" @default.
- W4280610604 startingPage "1" @default.
- W4280610604 abstract "The demand for automated online software systems is increasing day by day, which triggered the need for high-quality and maintainable softwares at lower cost. Software defect prediction is one of the crucial tasks of the quality assurance process which improves the quality at lower cost by reducing the overall testing and maintenance efforts. Early detection of defects in the software development life cycle (SDLC) leads to the early corrections and ultimately timely delivery of maintainable software, which satisfies the customer and makes him confident towards the development team. In the last decade, many machine learning-based approaches for software defect prediction have been proposed to achieve the higher accuracy. Artificial Neural Network (ANN) is considered as one of the widely used machine learning techniques, which is included in most of the proposed defect prediction frameworks and models. This research provides a critical analysis of the latest literature, published from year 2015 to 2018 on the use of Artificial Neural Networks for software defect prediction. In this study, a systematic research process is followed to extract the literature from three widely used digital libraries including IEEE, Elsevier, and Springer, and then after following a thorough process, 8 most relevant research publications are selected for critical review. This study will serve the researchers by exploring the current trends in software defect prediction with the focus on ANNs and will also provide a baseline for future innovations, comparisons, and reviews." @default.
- W4280610604 created "2022-05-22" @default.
- W4280610604 creator A5009282836 @default.
- W4280610604 creator A5018601701 @default.
- W4280610604 creator A5021305119 @default.
- W4280610604 creator A5028402415 @default.
- W4280610604 creator A5056873670 @default.
- W4280610604 creator A5071662846 @default.
- W4280610604 creator A5079455584 @default.
- W4280610604 date "2022-05-12" @default.
- W4280610604 modified "2023-10-03" @default.
- W4280610604 title "Software Defect Prediction Using Artificial Neural Networks: A Systematic Literature Review" @default.
- W4280610604 cites W1210281339 @default.
- W4280610604 cites W1656679015 @default.
- W4280610604 cites W1995029977 @default.
- W4280610604 cites W2048456683 @default.
- W4280610604 cites W2051244137 @default.
- W4280610604 cites W2074043463 @default.
- W4280610604 cites W2090854192 @default.
- W4280610604 cites W2106956101 @default.
- W4280610604 cites W2118328848 @default.
- W4280610604 cites W2127623179 @default.
- W4280610604 cites W2167387508 @default.
- W4280610604 cites W2172232422 @default.
- W4280610604 cites W2476367030 @default.
- W4280610604 cites W2540179803 @default.
- W4280610604 cites W2541280461 @default.
- W4280610604 cites W2562317638 @default.
- W4280610604 cites W2611490167 @default.
- W4280610604 cites W2743316948 @default.
- W4280610604 cites W2753886076 @default.
- W4280610604 cites W2770439076 @default.
- W4280610604 cites W2776632452 @default.
- W4280610604 cites W2779619602 @default.
- W4280610604 cites W2781400424 @default.
- W4280610604 cites W2783657687 @default.
- W4280610604 cites W2787337551 @default.
- W4280610604 cites W2788856212 @default.
- W4280610604 cites W2789977158 @default.
- W4280610604 cites W2801241673 @default.
- W4280610604 cites W2806960484 @default.
- W4280610604 cites W2807317544 @default.
- W4280610604 cites W3017072194 @default.
- W4280610604 cites W3175716475 @default.
- W4280610604 cites W3182306886 @default.
- W4280610604 cites W3206383478 @default.
- W4280610604 cites W4205126595 @default.
- W4280610604 doi "https://doi.org/10.1155/2022/2117339" @default.
- W4280610604 hasPublicationYear "2022" @default.
- W4280610604 type Work @default.
- W4280610604 citedByCount "5" @default.
- W4280610604 countsByYear W42806106042022 @default.
- W4280610604 countsByYear W42806106042023 @default.
- W4280610604 crossrefType "journal-article" @default.
- W4280610604 hasAuthorship W4280610604A5009282836 @default.
- W4280610604 hasAuthorship W4280610604A5018601701 @default.
- W4280610604 hasAuthorship W4280610604A5021305119 @default.
- W4280610604 hasAuthorship W4280610604A5028402415 @default.
- W4280610604 hasAuthorship W4280610604A5056873670 @default.
- W4280610604 hasAuthorship W4280610604A5071662846 @default.
- W4280610604 hasAuthorship W4280610604A5079455584 @default.
- W4280610604 hasBestOaLocation W42806106041 @default.
- W4280610604 hasConcept C1009929 @default.
- W4280610604 hasConcept C10272871 @default.
- W4280610604 hasConcept C111472728 @default.
- W4280610604 hasConcept C111919701 @default.
- W4280610604 hasConcept C115903868 @default.
- W4280610604 hasConcept C117447612 @default.
- W4280610604 hasConcept C119857082 @default.
- W4280610604 hasConcept C120617098 @default.
- W4280610604 hasConcept C138885662 @default.
- W4280610604 hasConcept C154945302 @default.
- W4280610604 hasConcept C17744445 @default.
- W4280610604 hasConcept C180152950 @default.
- W4280610604 hasConcept C189708586 @default.
- W4280610604 hasConcept C199360897 @default.
- W4280610604 hasConcept C199539241 @default.
- W4280610604 hasConcept C2776969324 @default.
- W4280610604 hasConcept C2777904410 @default.
- W4280610604 hasConcept C2779473830 @default.
- W4280610604 hasConcept C2779530757 @default.
- W4280610604 hasConcept C41008148 @default.
- W4280610604 hasConcept C50644808 @default.
- W4280610604 hasConcept C529173508 @default.
- W4280610604 hasConcept C98045186 @default.
- W4280610604 hasConceptScore W4280610604C1009929 @default.
- W4280610604 hasConceptScore W4280610604C10272871 @default.
- W4280610604 hasConceptScore W4280610604C111472728 @default.
- W4280610604 hasConceptScore W4280610604C111919701 @default.
- W4280610604 hasConceptScore W4280610604C115903868 @default.
- W4280610604 hasConceptScore W4280610604C117447612 @default.
- W4280610604 hasConceptScore W4280610604C119857082 @default.
- W4280610604 hasConceptScore W4280610604C120617098 @default.
- W4280610604 hasConceptScore W4280610604C138885662 @default.
- W4280610604 hasConceptScore W4280610604C154945302 @default.
- W4280610604 hasConceptScore W4280610604C17744445 @default.
- W4280610604 hasConceptScore W4280610604C180152950 @default.
- W4280610604 hasConceptScore W4280610604C189708586 @default.