Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280619510> ?p ?o ?g. }
- W4280619510 abstract "Abstract One of the main obstacles to the successful treatment of cancer is the phenomenon of drug resistance. A common strategy to overcome resistance is the use of combination therapies. However, the space of possibilities is huge and efficient search strategies are required. Machine Learning (ML) can be a useful tool for the discovery of novel, clinically relevant anti-cancer drug combinations. In particular, deep learning (DL) has become a popular choice for modeling drug combination effects. Here, we set out to examine the impact of different methodological choices on the performance of multimodal DL-based drug synergy prediction methods, including the use of different input data types, preprocessing steps and model architectures. Focusing on the NCI ALMANAC dataset, we found that feature selection based on prior biological knowledge has a positive impact on performance. Drug features appeared to be more predictive of drug response. Molecular fingerprint-based drug representations performed slightly better than learned representations, and gene expression data of cancer or drug response-specific genes also improved performance. In general, fully connected feature-encoding subnetworks outperformed other architectures, with DL outperforming other ML methods. Using a state-of-the-art interpretability method, we showed that DL models can learn to associate drug and cell line features with drug response in a biologically meaningful way. The strategies explored in this study will help to improve the development of computational methods for the rational design of effective drug combinations for cancer therapy. Author summary Cancer therapies often fail because tumor cells become resistant to treatment. One way to overcome resistance is by treating patients with a combination of two or more drugs. Some combinations may be more effective than when considering individual drug effects, a phenomenon called drug synergy. Computational drug synergy prediction methods can help to identify new, clinically relevant drug combinations. In this study, we developed several deep learning models for drug synergy prediction. We examined the effect of using different types of deep learning architectures, and different ways of representing drugs and cancer cell lines. We explored the use of biological prior knowledge to select relevant cell line features, and also tested data-driven feature reduction methods. We tested both precomputed drug features and deep learning methods that can directly learn features from raw representations of molecules. We also evaluated whether including genomic features, in addition to gene expression data, improves the predictive performance of the models. Through these experiments, we were able to identify strategies that will help guide the development of new deep learning models for drug synergy prediction in the future." @default.
- W4280619510 created "2022-05-22" @default.
- W4280619510 creator A5012833188 @default.
- W4280619510 creator A5040524717 @default.
- W4280619510 creator A5089291118 @default.
- W4280619510 date "2022-05-16" @default.
- W4280619510 modified "2023-10-16" @default.
- W4280619510 title "A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer" @default.
- W4280619510 cites W1832693441 @default.
- W4280619510 cites W1871475547 @default.
- W4280619510 cites W1966327575 @default.
- W4280619510 cites W1988037271 @default.
- W4280619510 cites W1994391392 @default.
- W4280619510 cites W1995858393 @default.
- W4280619510 cites W1998971866 @default.
- W4280619510 cites W2010457001 @default.
- W4280619510 cites W2035618305 @default.
- W4280619510 cites W2036291018 @default.
- W4280619510 cites W2042619042 @default.
- W4280619510 cites W2060737851 @default.
- W4280619510 cites W2061061337 @default.
- W4280619510 cites W2080056304 @default.
- W4280619510 cites W2086286404 @default.
- W4280619510 cites W2087312216 @default.
- W4280619510 cites W2101433730 @default.
- W4280619510 cites W2103563973 @default.
- W4280619510 cites W2108933868 @default.
- W4280619510 cites W2111109297 @default.
- W4280619510 cites W2114843025 @default.
- W4280619510 cites W2122825543 @default.
- W4280619510 cites W2126821513 @default.
- W4280619510 cites W2130410032 @default.
- W4280619510 cites W2149441684 @default.
- W4280619510 cites W2163922914 @default.
- W4280619510 cites W2171248814 @default.
- W4280619510 cites W2299417213 @default.
- W4280619510 cites W2461427403 @default.
- W4280619510 cites W2571957366 @default.
- W4280619510 cites W2594183968 @default.
- W4280619510 cites W2603756957 @default.
- W4280619510 cites W2608863179 @default.
- W4280619510 cites W2612467560 @default.
- W4280619510 cites W2767281692 @default.
- W4280619510 cites W2775061087 @default.
- W4280619510 cites W2817817898 @default.
- W4280619510 cites W2883248903 @default.
- W4280619510 cites W2889326414 @default.
- W4280619510 cites W2894573839 @default.
- W4280619510 cites W2898789672 @default.
- W4280619510 cites W2904362605 @default.
- W4280619510 cites W2904997892 @default.
- W4280619510 cites W2906092989 @default.
- W4280619510 cites W2911964244 @default.
- W4280619510 cites W2914372520 @default.
- W4280619510 cites W2915074980 @default.
- W4280619510 cites W2919115771 @default.
- W4280619510 cites W2944727022 @default.
- W4280619510 cites W2949066452 @default.
- W4280619510 cites W2949524414 @default.
- W4280619510 cites W2950860419 @default.
- W4280619510 cites W2951449549 @default.
- W4280619510 cites W2960677646 @default.
- W4280619510 cites W2965750004 @default.
- W4280619510 cites W3002943218 @default.
- W4280619510 cites W3006386963 @default.
- W4280619510 cites W3036016037 @default.
- W4280619510 cites W3036931110 @default.
- W4280619510 cites W3082081167 @default.
- W4280619510 cites W3084258660 @default.
- W4280619510 cites W3086347240 @default.
- W4280619510 cites W3092034553 @default.
- W4280619510 cites W3097145107 @default.
- W4280619510 cites W3102476541 @default.
- W4280619510 cites W3107626709 @default.
- W4280619510 cites W3127930610 @default.
- W4280619510 cites W3153245780 @default.
- W4280619510 cites W3164087725 @default.
- W4280619510 cites W3172530361 @default.
- W4280619510 cites W3195831412 @default.
- W4280619510 cites W3196945581 @default.
- W4280619510 cites W3199772305 @default.
- W4280619510 cites W3200762293 @default.
- W4280619510 cites W3203908308 @default.
- W4280619510 cites W3205195284 @default.
- W4280619510 cites W4231254854 @default.
- W4280619510 cites W4252003911 @default.
- W4280619510 doi "https://doi.org/10.1101/2022.05.16.492054" @default.
- W4280619510 hasPublicationYear "2022" @default.
- W4280619510 type Work @default.
- W4280619510 citedByCount "1" @default.
- W4280619510 countsByYear W42806195102022 @default.
- W4280619510 crossrefType "posted-content" @default.
- W4280619510 hasAuthorship W4280619510A5012833188 @default.
- W4280619510 hasAuthorship W4280619510A5040524717 @default.
- W4280619510 hasAuthorship W4280619510A5089291118 @default.
- W4280619510 hasBestOaLocation W42806195101 @default.
- W4280619510 hasConcept C108583219 @default.
- W4280619510 hasConcept C119857082 @default.
- W4280619510 hasConcept C138885662 @default.
- W4280619510 hasConcept C148483581 @default.