Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280621297> ?p ?o ?g. }
- W4280621297 endingPage "1665" @default.
- W4280621297 startingPage "1665" @default.
- W4280621297 abstract "Osteosarcoma is a malignant bone tumor that is extremely dangerous to human health. Not only does it require a large amount of work, it is also a complicated task to outline the lesion area in an image manually, using traditional methods. With the development of computer-aided diagnostic techniques, more and more researchers are focusing on automatic segmentation techniques for osteosarcoma analysis. However, existing methods ignore the size of osteosarcomas, making it difficult to identify and segment smaller tumors. This is very detrimental to the early diagnosis of osteosarcoma. Therefore, this paper proposes a Contextual Axial-Preserving Attention Network (CaPaN)-based MRI image-assisted segmentation method for osteosarcoma detection. Based on the use of Res2Net, a parallel decoder is added to aggregate high-level features which effectively combines the local and global features of osteosarcoma. In addition, channel feature pyramid (CFP) and axial attention (A-RA) mechanisms are used. A lightweight CFP can extract feature mapping and contextual information of different sizes. A-RA uses axial attention to distinguish tumor tissues by mining, which reduces computational costs and thus improves the generalization performance of the model. We conducted experiments using a real dataset provided by the Second Xiangya Affiliated Hospital and the results showed that our proposed method achieves better segmentation results than alternative models. In particular, our method shows significant advantages with respect to small target segmentation. Its precision is about 2% higher than the average values of other models. For the segmentation of small objects, the DSC value of CaPaN is 0.021 higher than that of the commonly used U-Net method." @default.
- W4280621297 created "2022-05-22" @default.
- W4280621297 creator A5027630663 @default.
- W4280621297 creator A5060470951 @default.
- W4280621297 creator A5065873184 @default.
- W4280621297 date "2022-05-12" @default.
- W4280621297 modified "2023-10-16" @default.
- W4280621297 title "An Attention-Preserving Network-Based Method for Assisted Segmentation of Osteosarcoma MRI Images" @default.
- W4280621297 cites W1901129140 @default.
- W4280621297 cites W1931621964 @default.
- W4280621297 cites W1971709418 @default.
- W4280621297 cites W2057024739 @default.
- W4280621297 cites W2072866906 @default.
- W4280621297 cites W2395611524 @default.
- W4280621297 cites W2556562139 @default.
- W4280621297 cites W2560023338 @default.
- W4280621297 cites W2565639579 @default.
- W4280621297 cites W2591213449 @default.
- W4280621297 cites W2783895116 @default.
- W4280621297 cites W2799597343 @default.
- W4280621297 cites W2884436604 @default.
- W4280621297 cites W2889279188 @default.
- W4280621297 cites W2924449894 @default.
- W4280621297 cites W2928165649 @default.
- W4280621297 cites W2941032002 @default.
- W4280621297 cites W2989650556 @default.
- W4280621297 cites W3017153481 @default.
- W4280621297 cites W3027109052 @default.
- W4280621297 cites W3042642124 @default.
- W4280621297 cites W3087050846 @default.
- W4280621297 cites W3087644100 @default.
- W4280621297 cites W3091091787 @default.
- W4280621297 cites W3094268709 @default.
- W4280621297 cites W3094473652 @default.
- W4280621297 cites W3099931472 @default.
- W4280621297 cites W3113478493 @default.
- W4280621297 cites W3120660140 @default.
- W4280621297 cites W3132400453 @default.
- W4280621297 cites W3164560818 @default.
- W4280621297 cites W3165898389 @default.
- W4280621297 cites W3190774242 @default.
- W4280621297 cites W3205247817 @default.
- W4280621297 cites W3208415132 @default.
- W4280621297 cites W3211035581 @default.
- W4280621297 cites W3216730860 @default.
- W4280621297 cites W3217772895 @default.
- W4280621297 cites W4200087356 @default.
- W4280621297 cites W4206255522 @default.
- W4280621297 cites W4206273332 @default.
- W4280621297 cites W4206468162 @default.
- W4280621297 cites W4214811741 @default.
- W4280621297 cites W4214881770 @default.
- W4280621297 cites W4220663381 @default.
- W4280621297 cites W4220945434 @default.
- W4280621297 cites W4221020680 @default.
- W4280621297 cites W4229016463 @default.
- W4280621297 cites W4243811925 @default.
- W4280621297 cites W4280563321 @default.
- W4280621297 doi "https://doi.org/10.3390/math10101665" @default.
- W4280621297 hasPublicationYear "2022" @default.
- W4280621297 type Work @default.
- W4280621297 citedByCount "24" @default.
- W4280621297 countsByYear W42806212972022 @default.
- W4280621297 countsByYear W42806212972023 @default.
- W4280621297 crossrefType "journal-article" @default.
- W4280621297 hasAuthorship W4280621297A5027630663 @default.
- W4280621297 hasAuthorship W4280621297A5060470951 @default.
- W4280621297 hasAuthorship W4280621297A5065873184 @default.
- W4280621297 hasBestOaLocation W42806212971 @default.
- W4280621297 hasConcept C124504099 @default.
- W4280621297 hasConcept C134306372 @default.
- W4280621297 hasConcept C138885662 @default.
- W4280621297 hasConcept C142575187 @default.
- W4280621297 hasConcept C142724271 @default.
- W4280621297 hasConcept C153180895 @default.
- W4280621297 hasConcept C154945302 @default.
- W4280621297 hasConcept C159985019 @default.
- W4280621297 hasConcept C177148314 @default.
- W4280621297 hasConcept C192562407 @default.
- W4280621297 hasConcept C2524010 @default.
- W4280621297 hasConcept C2776401178 @default.
- W4280621297 hasConcept C2777760704 @default.
- W4280621297 hasConcept C31972630 @default.
- W4280621297 hasConcept C33923547 @default.
- W4280621297 hasConcept C41008148 @default.
- W4280621297 hasConcept C41895202 @default.
- W4280621297 hasConcept C4679612 @default.
- W4280621297 hasConcept C71924100 @default.
- W4280621297 hasConcept C89600930 @default.
- W4280621297 hasConceptScore W4280621297C124504099 @default.
- W4280621297 hasConceptScore W4280621297C134306372 @default.
- W4280621297 hasConceptScore W4280621297C138885662 @default.
- W4280621297 hasConceptScore W4280621297C142575187 @default.
- W4280621297 hasConceptScore W4280621297C142724271 @default.
- W4280621297 hasConceptScore W4280621297C153180895 @default.
- W4280621297 hasConceptScore W4280621297C154945302 @default.
- W4280621297 hasConceptScore W4280621297C159985019 @default.
- W4280621297 hasConceptScore W4280621297C177148314 @default.