Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280623839> ?p ?o ?g. }
- W4280623839 endingPage "5158" @default.
- W4280623839 startingPage "5158" @default.
- W4280623839 abstract "With the rapid development of Earth observation technology, how to effectively and efficiently detect changes in multi-temporal images has become an important but challenging problem. Relying on the advantages of high performance and robustness, object-based change detection (CD) has become increasingly popular. By analyzing the similarity of local pixels, object-based CD aggregates similar pixels into one object and takes it as the basic processing unit. However, object-based approaches often have difficulty capturing discriminative features, as irregular objects make processing difficult. To address this problem, in this paper, we propose a novel superpixel-based multi-scale Siamese graph attention network (MSGATN) which can process unstructured data natively and extract valuable features. First, a difference image (DI) is generated by Euclidean distance between bitemporal images. Second, superpixel segmentation is employed based on DI to divide each image into many homogeneous regions. Then, these superpixels are used to model the problem by graph theory to construct a series of nodes with the adjacency between them. Subsequently, the multi-scale neighborhood features of the nodes are extracted through applying a graph convolutional network and concatenated by an attention mechanism. Finally, the binary change map can be obtained by classifying each node by some fully connected layers. The novel features of MSGATN can be summarized as follows: (1) Training in multi-scale constructed graphs improves the recognition over changed land cover of varied sizes and shapes. (2) Spectral and spatial self-attention mechanisms are exploited for a better change detection performance. The experimental results on several real datasets show the effectiveness and superiority of the proposed method. In addition, compared to other recent methods, the proposed can demonstrate very high processing efficiency and greatly reduce the dependence on labeled training samples in a semisupervised training fashion." @default.
- W4280623839 created "2022-05-22" @default.
- W4280623839 creator A5051767201 @default.
- W4280623839 creator A5067729205 @default.
- W4280623839 creator A5072869223 @default.
- W4280623839 creator A5087319429 @default.
- W4280623839 date "2022-05-20" @default.
- W4280623839 modified "2023-10-01" @default.
- W4280623839 title "MSGATN: A Superpixel-Based Multi-Scale Siamese Graph Attention Network for Change Detection in Remote Sensing Images" @default.
- W4280623839 cites W1964069486 @default.
- W4280623839 cites W1964967908 @default.
- W4280623839 cites W1972023946 @default.
- W4280623839 cites W2011572981 @default.
- W4280623839 cites W2047243114 @default.
- W4280623839 cites W2057670944 @default.
- W4280623839 cites W2085283969 @default.
- W4280623839 cites W2085289201 @default.
- W4280623839 cites W2118246710 @default.
- W4280623839 cites W2133059825 @default.
- W4280623839 cites W2144552105 @default.
- W4280623839 cites W2157026765 @default.
- W4280623839 cites W2221448138 @default.
- W4280623839 cites W2293779343 @default.
- W4280623839 cites W2332183138 @default.
- W4280623839 cites W2460291804 @default.
- W4280623839 cites W2531619007 @default.
- W4280623839 cites W2587329506 @default.
- W4280623839 cites W2624329447 @default.
- W4280623839 cites W2735042947 @default.
- W4280623839 cites W2777237375 @default.
- W4280623839 cites W2800329949 @default.
- W4280623839 cites W2891865803 @default.
- W4280623839 cites W2892621946 @default.
- W4280623839 cites W2900458999 @default.
- W4280623839 cites W2908320224 @default.
- W4280623839 cites W2910587630 @default.
- W4280623839 cites W2911445232 @default.
- W4280623839 cites W2911805825 @default.
- W4280623839 cites W2931535108 @default.
- W4280623839 cites W2942105743 @default.
- W4280623839 cites W2953308875 @default.
- W4280623839 cites W2965608468 @default.
- W4280623839 cites W2978780657 @default.
- W4280623839 cites W2985111225 @default.
- W4280623839 cites W2988324911 @default.
- W4280623839 cites W3012320977 @default.
- W4280623839 cites W3014293967 @default.
- W4280623839 cites W3017051070 @default.
- W4280623839 cites W3027201985 @default.
- W4280623839 cites W3027225766 @default.
- W4280623839 cites W3033600255 @default.
- W4280623839 cites W3035335060 @default.
- W4280623839 cites W3047443805 @default.
- W4280623839 cites W3090239664 @default.
- W4280623839 cites W3105553032 @default.
- W4280623839 cites W3114674012 @default.
- W4280623839 cites W3118358609 @default.
- W4280623839 cites W3121000959 @default.
- W4280623839 cites W3130847111 @default.
- W4280623839 cites W3131096279 @default.
- W4280623839 cites W3141898592 @default.
- W4280623839 cites W3160565231 @default.
- W4280623839 cites W3164154062 @default.
- W4280623839 cites W3178882511 @default.
- W4280623839 cites W3182257909 @default.
- W4280623839 cites W3186638334 @default.
- W4280623839 cites W3192436896 @default.
- W4280623839 cites W3197715477 @default.
- W4280623839 cites W3211646616 @default.
- W4280623839 cites W3216244838 @default.
- W4280623839 cites W4206550078 @default.
- W4280623839 cites W4224212608 @default.
- W4280623839 cites W4226102968 @default.
- W4280623839 doi "https://doi.org/10.3390/app12105158" @default.
- W4280623839 hasPublicationYear "2022" @default.
- W4280623839 type Work @default.
- W4280623839 citedByCount "4" @default.
- W4280623839 countsByYear W42806238392022 @default.
- W4280623839 countsByYear W42806238392023 @default.
- W4280623839 crossrefType "journal-article" @default.
- W4280623839 hasAuthorship W4280623839A5051767201 @default.
- W4280623839 hasAuthorship W4280623839A5067729205 @default.
- W4280623839 hasAuthorship W4280623839A5072869223 @default.
- W4280623839 hasAuthorship W4280623839A5087319429 @default.
- W4280623839 hasBestOaLocation W42806238391 @default.
- W4280623839 hasConcept C110484373 @default.
- W4280623839 hasConcept C11413529 @default.
- W4280623839 hasConcept C132525143 @default.
- W4280623839 hasConcept C153180895 @default.
- W4280623839 hasConcept C154945302 @default.
- W4280623839 hasConcept C160633673 @default.
- W4280623839 hasConcept C203595873 @default.
- W4280623839 hasConcept C31972630 @default.
- W4280623839 hasConcept C41008148 @default.
- W4280623839 hasConcept C80444323 @default.
- W4280623839 hasConcept C97931131 @default.
- W4280623839 hasConceptScore W4280623839C110484373 @default.
- W4280623839 hasConceptScore W4280623839C11413529 @default.