Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280625347> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4280625347 endingPage "445" @default.
- W4280625347 startingPage "439" @default.
- W4280625347 abstract "Abstract. With recent abundant availability of high resolution multi-sensor UAV data and rapid development of deep learning models, efficient automatic mapping using deep neural network is becoming a common approach. However, with the ever-expanding inventories of both data and deep neural network models, it can be confusing to know how to choose. Most models expect input as conventional RGB format, but that can be extended to incorporate multi-sensor data. In this study, we re-implement and modify three deep neural network models of various complexities, namely UNET, DeepLabv3+ and Dense Dilated Convolutions Merging Network to use both RGB and near infrared (NIR) data from a multi-sensor UAV dataset over a Norwegian coastal area. The dataset has been carefully annotated by marine experts for coastal habitats. We find that the NIR channel increases UNET performance significantly but has mixed effects on DeepLabv3+ and DDCM. The latter two are capable of achieving best performance with RGB-only. The class-wise evaluation shows that the NIR channel greatly increases the performance in UNET for green, red algae, vegetation and rock. However, the purpose of the study is not to merely compare the models or to achieve the best performance, but to gain more insights on the compatibility between various models and data types. And as there is an ongoing effort in acquiring and annotating more data, we aim to include them in the coming year." @default.
- W4280625347 created "2022-05-22" @default.
- W4280625347 creator A5051379161 @default.
- W4280625347 creator A5067745330 @default.
- W4280625347 creator A5071345011 @default.
- W4280625347 creator A5083516604 @default.
- W4280625347 creator A5084672445 @default.
- W4280625347 date "2022-05-17" @default.
- W4280625347 modified "2023-09-27" @default.
- W4280625347 title "COASTAL HABITAT MAPPING WITH UAV MULTI-SENSOR DATA: AN EXPERIMENT AMONG DCNN-BASED APPROACHES" @default.
- W4280625347 doi "https://doi.org/10.5194/isprs-annals-v-3-2022-439-2022" @default.
- W4280625347 hasPublicationYear "2022" @default.
- W4280625347 type Work @default.
- W4280625347 citedByCount "0" @default.
- W4280625347 crossrefType "journal-article" @default.
- W4280625347 hasAuthorship W4280625347A5051379161 @default.
- W4280625347 hasAuthorship W4280625347A5067745330 @default.
- W4280625347 hasAuthorship W4280625347A5071345011 @default.
- W4280625347 hasAuthorship W4280625347A5083516604 @default.
- W4280625347 hasAuthorship W4280625347A5084672445 @default.
- W4280625347 hasBestOaLocation W42806253471 @default.
- W4280625347 hasConcept C108583219 @default.
- W4280625347 hasConcept C119857082 @default.
- W4280625347 hasConcept C124101348 @default.
- W4280625347 hasConcept C154945302 @default.
- W4280625347 hasConcept C205649164 @default.
- W4280625347 hasConcept C41008148 @default.
- W4280625347 hasConcept C50644808 @default.
- W4280625347 hasConcept C62649853 @default.
- W4280625347 hasConcept C82990744 @default.
- W4280625347 hasConceptScore W4280625347C108583219 @default.
- W4280625347 hasConceptScore W4280625347C119857082 @default.
- W4280625347 hasConceptScore W4280625347C124101348 @default.
- W4280625347 hasConceptScore W4280625347C154945302 @default.
- W4280625347 hasConceptScore W4280625347C205649164 @default.
- W4280625347 hasConceptScore W4280625347C41008148 @default.
- W4280625347 hasConceptScore W4280625347C50644808 @default.
- W4280625347 hasConceptScore W4280625347C62649853 @default.
- W4280625347 hasConceptScore W4280625347C82990744 @default.
- W4280625347 hasLocation W42806253471 @default.
- W4280625347 hasOpenAccess W4280625347 @default.
- W4280625347 hasPrimaryLocation W42806253471 @default.
- W4280625347 hasRelatedWork W2795261237 @default.
- W4280625347 hasRelatedWork W3014300295 @default.
- W4280625347 hasRelatedWork W3164822677 @default.
- W4280625347 hasRelatedWork W4223943233 @default.
- W4280625347 hasRelatedWork W4225161397 @default.
- W4280625347 hasRelatedWork W4312200629 @default.
- W4280625347 hasRelatedWork W4360585206 @default.
- W4280625347 hasRelatedWork W4364306694 @default.
- W4280625347 hasRelatedWork W4380075502 @default.
- W4280625347 hasRelatedWork W4380086463 @default.
- W4280625347 hasVolume "V-3-2022" @default.
- W4280625347 isParatext "false" @default.
- W4280625347 isRetracted "false" @default.
- W4280625347 workType "article" @default.