Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280638863> ?p ?o ?g. }
- W4280638863 endingPage "72" @default.
- W4280638863 startingPage "54" @default.
- W4280638863 abstract "Medical diagnosis, notably concerning tumors, has been transformed by artificial intelligence as well as deep neural network. White blood cell identification, in particular, necessitates effective diagnosis and therapy. White Blood Cell Cancer (WBCC) comes in a variety of forms. Acute Leukemia Lymphocytes (ALL), Acute Myeloma Lymphocytes (AML), Chronic Leukemia Lymphocytes (CLL), and Chronic Myeloma Lymphocytes (CML) are white blood cell cancers for which detection is time-consuming procedure, vulnerable to sentient as well as equipment blunders. Despite just a comprehensive review with a competent examiner, it can be hard to render a precise conclusive determination in some cases. Conversely, Computer-Aided Diagnosis (CAD) may assist in lessening the number of inaccuracies as well as duration spent in diagnosing WBCC. Though deep learning is widely regarded as the most advanced method for detecting WBCCs, the richness of the retrieved attributes employed in developing the pixel-wise categorization algorithms has a substantial relationship with the efficiency of WBCC identification. The investigation of the various phases of alterations related with WBC concentrations and characteristics is crucial to CAD. Leveraging image handling plus deep learning technologies, a novel fusion characteristic retrieval technique has been created in this research. The suggested approach is divided into two parts: 1) The CMYK-moment localization approach is applied to define the Region of Interest (ROI) and 2) A CNN dependent characteristic blend strategy is utilized to obtain deep learning characteristics. The relevance of the retrieved characteristics is assessed via a variety of categorization techniques. The suggested component collection approach versus different attributes retrieval techniques is tested with an exogenous resource. With all the predictors, the suggested methodology exhibits good effectiveness, adaptability, including consistency, exhibiting aggregate categorization accuracies of 97.57 percent and 96.41 percent, correspondingly, utilizing the main as well as auxiliary samples. This approach has provided a novel option for enhancing CLL identification that may result towards a more accurate identification of malignancies." @default.
- W4280638863 created "2022-05-22" @default.
- W4280638863 creator A5018250950 @default.
- W4280638863 creator A5081130685 @default.
- W4280638863 date "2022-05-16" @default.
- W4280638863 modified "2023-10-06" @default.
- W4280638863 title "Detection of White Blood Cell Cancer using Deep Learning using Cmyk-Moment Localisation for Information Retrieval" @default.
- W4280638863 cites W2118153003 @default.
- W4280638863 cites W2140396556 @default.
- W4280638863 cites W2232141968 @default.
- W4280638863 cites W2278587387 @default.
- W4280638863 cites W2330219538 @default.
- W4280638863 cites W2462957156 @default.
- W4280638863 cites W2495430411 @default.
- W4280638863 cites W2544835422 @default.
- W4280638863 cites W2728100876 @default.
- W4280638863 cites W2749212198 @default.
- W4280638863 cites W2753238120 @default.
- W4280638863 cites W2773694050 @default.
- W4280638863 cites W2792196801 @default.
- W4280638863 cites W2888024273 @default.
- W4280638863 cites W2909225032 @default.
- W4280638863 cites W2911964244 @default.
- W4280638863 cites W2920067160 @default.
- W4280638863 cites W2922975151 @default.
- W4280638863 cites W2947431583 @default.
- W4280638863 cites W2962766617 @default.
- W4280638863 cites W2973858703 @default.
- W4280638863 cites W2996401939 @default.
- W4280638863 cites W3015930014 @default.
- W4280638863 cites W3035665735 @default.
- W4280638863 cites W3037839692 @default.
- W4280638863 cites W3091750992 @default.
- W4280638863 cites W3094068793 @default.
- W4280638863 cites W3102476541 @default.
- W4280638863 cites W3115044335 @default.
- W4280638863 cites W3119831909 @default.
- W4280638863 cites W3128053574 @default.
- W4280638863 cites W3174870831 @default.
- W4280638863 cites W3186570517 @default.
- W4280638863 cites W3187020955 @default.
- W4280638863 cites W3198211691 @default.
- W4280638863 cites W4233045210 @default.
- W4280638863 cites W4239510810 @default.
- W4280638863 doi "https://doi.org/10.36548/jismac.2022.1.006" @default.
- W4280638863 hasPublicationYear "2022" @default.
- W4280638863 type Work @default.
- W4280638863 citedByCount "12" @default.
- W4280638863 countsByYear W42806388632022 @default.
- W4280638863 countsByYear W42806388632023 @default.
- W4280638863 crossrefType "journal-article" @default.
- W4280638863 hasAuthorship W4280638863A5018250950 @default.
- W4280638863 hasAuthorship W4280638863A5081130685 @default.
- W4280638863 hasBestOaLocation W42806388631 @default.
- W4280638863 hasConcept C108583219 @default.
- W4280638863 hasConcept C116834253 @default.
- W4280638863 hasConcept C119857082 @default.
- W4280638863 hasConcept C121608353 @default.
- W4280638863 hasConcept C126322002 @default.
- W4280638863 hasConcept C153180895 @default.
- W4280638863 hasConcept C154945302 @default.
- W4280638863 hasConcept C158154518 @default.
- W4280638863 hasConcept C17744445 @default.
- W4280638863 hasConcept C199539241 @default.
- W4280638863 hasConcept C203014093 @default.
- W4280638863 hasConcept C2778488018 @default.
- W4280638863 hasConcept C41008148 @default.
- W4280638863 hasConcept C59822182 @default.
- W4280638863 hasConcept C71924100 @default.
- W4280638863 hasConcept C86803240 @default.
- W4280638863 hasConcept C94124525 @default.
- W4280638863 hasConceptScore W4280638863C108583219 @default.
- W4280638863 hasConceptScore W4280638863C116834253 @default.
- W4280638863 hasConceptScore W4280638863C119857082 @default.
- W4280638863 hasConceptScore W4280638863C121608353 @default.
- W4280638863 hasConceptScore W4280638863C126322002 @default.
- W4280638863 hasConceptScore W4280638863C153180895 @default.
- W4280638863 hasConceptScore W4280638863C154945302 @default.
- W4280638863 hasConceptScore W4280638863C158154518 @default.
- W4280638863 hasConceptScore W4280638863C17744445 @default.
- W4280638863 hasConceptScore W4280638863C199539241 @default.
- W4280638863 hasConceptScore W4280638863C203014093 @default.
- W4280638863 hasConceptScore W4280638863C2778488018 @default.
- W4280638863 hasConceptScore W4280638863C41008148 @default.
- W4280638863 hasConceptScore W4280638863C59822182 @default.
- W4280638863 hasConceptScore W4280638863C71924100 @default.
- W4280638863 hasConceptScore W4280638863C86803240 @default.
- W4280638863 hasConceptScore W4280638863C94124525 @default.
- W4280638863 hasIssue "1" @default.
- W4280638863 hasLocation W42806388631 @default.
- W4280638863 hasOpenAccess W4280638863 @default.
- W4280638863 hasPrimaryLocation W42806388631 @default.
- W4280638863 hasRelatedWork W2795261237 @default.
- W4280638863 hasRelatedWork W3014300295 @default.
- W4280638863 hasRelatedWork W3164822677 @default.
- W4280638863 hasRelatedWork W4223943233 @default.
- W4280638863 hasRelatedWork W4225161397 @default.
- W4280638863 hasRelatedWork W4312200629 @default.