Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280642214> ?p ?o ?g. }
- W4280642214 endingPage "105140" @default.
- W4280642214 startingPage "105140" @default.
- W4280642214 abstract "The support vector classifier (SVC) is one of the most powerful machine learning algorithms. This algorithm has been accepted as an effective method in three-dimensional geological modeling. Although the model selection has a great impact on the performance of SVC algorithm, most of mining studies have neglected it and used the grid search method. Therefore, in this study, a new approach is proposed for improving the selection of SVC models. This approach uses particle swarm optimization (PSO) to determine the important parameters of SCV such as penalty and kernel parameters. The proposed approach was applied in the modeling process of the Iju porphyry copper deposit to delineate alteration and mineralization zones. The optimal penalty and kernel parameters were found to be 27.2 and 2−4.75 for alteration zone, and 22.72 and 2−6.23 for mineralization zone, respectively. With 97.4% and 97.01% rates of accuracy for mineralization and alteration zones, the PSO results showed reasonable performance in classification. The proposed approach had better accuracy than grid search method. Therefore, because of its better performance, the geological models were developed using the PSO method to be used as a basis for future resource evaluation." @default.
- W4280642214 created "2022-05-22" @default.
- W4280642214 creator A5010789167 @default.
- W4280642214 creator A5041283241 @default.
- W4280642214 creator A5058121841 @default.
- W4280642214 date "2022-08-01" @default.
- W4280642214 modified "2023-10-11" @default.
- W4280642214 title "Optimization of support vector machine parameters in modeling of Iju deposit mineralization and alteration zones using particle swarm optimization algorithm and grid search method" @default.
- W4280642214 cites W1175502716 @default.
- W4280642214 cites W1586335931 @default.
- W4280642214 cites W1588486985 @default.
- W4280642214 cites W1751962365 @default.
- W4280642214 cites W1936007394 @default.
- W4280642214 cites W1965545172 @default.
- W4280642214 cites W1969560166 @default.
- W4280642214 cites W1970090588 @default.
- W4280642214 cites W1973347433 @default.
- W4280642214 cites W1975645372 @default.
- W4280642214 cites W1980789580 @default.
- W4280642214 cites W1992705103 @default.
- W4280642214 cites W1996386353 @default.
- W4280642214 cites W2002850227 @default.
- W4280642214 cites W2007816466 @default.
- W4280642214 cites W2011553775 @default.
- W4280642214 cites W2018366608 @default.
- W4280642214 cites W2020355555 @default.
- W4280642214 cites W2024060531 @default.
- W4280642214 cites W2026732289 @default.
- W4280642214 cites W2028742169 @default.
- W4280642214 cites W2032278971 @default.
- W4280642214 cites W2037575202 @default.
- W4280642214 cites W2046180871 @default.
- W4280642214 cites W2049949746 @default.
- W4280642214 cites W2065162110 @default.
- W4280642214 cites W2081480383 @default.
- W4280642214 cites W2082140503 @default.
- W4280642214 cites W2084263442 @default.
- W4280642214 cites W2090727353 @default.
- W4280642214 cites W2100421935 @default.
- W4280642214 cites W2128420091 @default.
- W4280642214 cites W2139212933 @default.
- W4280642214 cites W2153635508 @default.
- W4280642214 cites W2158994553 @default.
- W4280642214 cites W2281806800 @default.
- W4280642214 cites W2284304237 @default.
- W4280642214 cites W2467353508 @default.
- W4280642214 cites W2516481003 @default.
- W4280642214 cites W2520253389 @default.
- W4280642214 cites W2531479340 @default.
- W4280642214 cites W2564974494 @default.
- W4280642214 cites W2617800229 @default.
- W4280642214 cites W2692137003 @default.
- W4280642214 cites W2741729448 @default.
- W4280642214 cites W2774123033 @default.
- W4280642214 cites W2776077524 @default.
- W4280642214 cites W2778896011 @default.
- W4280642214 cites W2781862496 @default.
- W4280642214 cites W2789504404 @default.
- W4280642214 cites W2791193631 @default.
- W4280642214 cites W2791254153 @default.
- W4280642214 cites W2795398442 @default.
- W4280642214 cites W2796764199 @default.
- W4280642214 cites W2885283031 @default.
- W4280642214 cites W2905312368 @default.
- W4280642214 cites W2915716195 @default.
- W4280642214 cites W2921581423 @default.
- W4280642214 cites W2924868743 @default.
- W4280642214 cites W2936859456 @default.
- W4280642214 cites W2937572031 @default.
- W4280642214 cites W2937888061 @default.
- W4280642214 cites W2941006759 @default.
- W4280642214 cites W2945829261 @default.
- W4280642214 cites W2955716717 @default.
- W4280642214 cites W3000981632 @default.
- W4280642214 cites W3001975036 @default.
- W4280642214 cites W3004790706 @default.
- W4280642214 cites W3025658083 @default.
- W4280642214 cites W3084064687 @default.
- W4280642214 cites W3093792794 @default.
- W4280642214 cites W3144613578 @default.
- W4280642214 cites W3164740228 @default.
- W4280642214 cites W3171799684 @default.
- W4280642214 cites W3171942522 @default.
- W4280642214 cites W3190438496 @default.
- W4280642214 cites W4239510810 @default.
- W4280642214 doi "https://doi.org/10.1016/j.cageo.2022.105140" @default.
- W4280642214 hasPublicationYear "2022" @default.
- W4280642214 type Work @default.
- W4280642214 citedByCount "12" @default.
- W4280642214 countsByYear W42806422142022 @default.
- W4280642214 countsByYear W42806422142023 @default.
- W4280642214 crossrefType "journal-article" @default.
- W4280642214 hasAuthorship W4280642214A5010789167 @default.
- W4280642214 hasAuthorship W4280642214A5041283241 @default.
- W4280642214 hasAuthorship W4280642214A5058121841 @default.
- W4280642214 hasConcept C10485038 @default.
- W4280642214 hasConcept C11413529 @default.
- W4280642214 hasConcept C12267149 @default.