Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280643272> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4280643272 endingPage "10" @default.
- W4280643272 startingPage "1" @default.
- W4280643272 abstract "In view of the prototype of the traditional chaotic network model, a neural network model with continuously updated chaotic noise is innovatively improved. This model has the advantages of two network models. On this basis, a logic graph is proposed, which can replace the chaotic noise generated by the running process of the model function. Models with these advantages can innovatively solve problems such as constrained optimization with dimensions larger than three, high discreteness, and weak linear relationship between convex and concave. Simulation results can be confirmed that the algorithm of this model is very close to the predicted value. This neural network model is an improved model with strong applicability and can be applied to optimization problems of economic systems or other industrial systems. In order to effectively alleviate the predictive control problem of nonlinear research objects, we propose a control method based on chaotic neural network in this study. Taking the economic model as the nonlinear object, establishing the basic structure of the chaotic neural network model, reconstructing the time and space structure, and obtaining the optimal solution of time continuation and embedding dimension through information entropy and pseudonearest neighbor, then the chaotic properties of nonlinear objects and the topology of chaotic neural networks are determined. In the simulation, test samples and experimental samples are established, and the predicted and true values are compared. The prediction results of the model established by this method in this study prove the effectiveness of the method. The training time of the chaotic neural network will not fall into a local minimum, thereby reducing the training time and ensuring the accuracy of the prediction." @default.
- W4280643272 created "2022-05-22" @default.
- W4280643272 creator A5025851882 @default.
- W4280643272 creator A5058825339 @default.
- W4280643272 date "2022-05-12" @default.
- W4280643272 modified "2023-10-18" @default.
- W4280643272 title "Economic Forecasting Model Based on Chaos Simulated Annealing Neural Network" @default.
- W4280643272 cites W1977157289 @default.
- W4280643272 cites W2301106258 @default.
- W4280643272 cites W2323471998 @default.
- W4280643272 cites W2328113614 @default.
- W4280643272 cites W2335702239 @default.
- W4280643272 cites W2419633203 @default.
- W4280643272 cites W2434003202 @default.
- W4280643272 cites W2535172989 @default.
- W4280643272 cites W2592501469 @default.
- W4280643272 cites W2594857809 @default.
- W4280643272 cites W2612510201 @default.
- W4280643272 cites W2780265514 @default.
- W4280643272 cites W2789630537 @default.
- W4280643272 cites W2801292020 @default.
- W4280643272 cites W2901072570 @default.
- W4280643272 cites W2906415364 @default.
- W4280643272 cites W2912457210 @default.
- W4280643272 cites W2929008720 @default.
- W4280643272 cites W2931619664 @default.
- W4280643272 cites W2950877184 @default.
- W4280643272 cites W2966812659 @default.
- W4280643272 cites W2999472351 @default.
- W4280643272 cites W3005972894 @default.
- W4280643272 cites W97681402 @default.
- W4280643272 doi "https://doi.org/10.1155/2022/9005833" @default.
- W4280643272 hasPublicationYear "2022" @default.
- W4280643272 type Work @default.
- W4280643272 citedByCount "2" @default.
- W4280643272 countsByYear W42806432722022 @default.
- W4280643272 countsByYear W42806432722023 @default.
- W4280643272 crossrefType "journal-article" @default.
- W4280643272 hasAuthorship W4280643272A5025851882 @default.
- W4280643272 hasAuthorship W4280643272A5058825339 @default.
- W4280643272 hasBestOaLocation W42806432721 @default.
- W4280643272 hasConcept C11413529 @default.
- W4280643272 hasConcept C121332964 @default.
- W4280643272 hasConcept C126255220 @default.
- W4280643272 hasConcept C126980161 @default.
- W4280643272 hasConcept C154945302 @default.
- W4280643272 hasConcept C158622935 @default.
- W4280643272 hasConcept C2777052490 @default.
- W4280643272 hasConcept C33923547 @default.
- W4280643272 hasConcept C41008148 @default.
- W4280643272 hasConcept C41608201 @default.
- W4280643272 hasConcept C50644808 @default.
- W4280643272 hasConcept C62520636 @default.
- W4280643272 hasConceptScore W4280643272C11413529 @default.
- W4280643272 hasConceptScore W4280643272C121332964 @default.
- W4280643272 hasConceptScore W4280643272C126255220 @default.
- W4280643272 hasConceptScore W4280643272C126980161 @default.
- W4280643272 hasConceptScore W4280643272C154945302 @default.
- W4280643272 hasConceptScore W4280643272C158622935 @default.
- W4280643272 hasConceptScore W4280643272C2777052490 @default.
- W4280643272 hasConceptScore W4280643272C33923547 @default.
- W4280643272 hasConceptScore W4280643272C41008148 @default.
- W4280643272 hasConceptScore W4280643272C41608201 @default.
- W4280643272 hasConceptScore W4280643272C50644808 @default.
- W4280643272 hasConceptScore W4280643272C62520636 @default.
- W4280643272 hasLocation W42806432721 @default.
- W4280643272 hasLocation W42806432722 @default.
- W4280643272 hasOpenAccess W4280643272 @default.
- W4280643272 hasPrimaryLocation W42806432721 @default.
- W4280643272 hasRelatedWork W2091217012 @default.
- W4280643272 hasRelatedWork W2140857186 @default.
- W4280643272 hasRelatedWork W2357518652 @default.
- W4280643272 hasRelatedWork W2364796244 @default.
- W4280643272 hasRelatedWork W2384901970 @default.
- W4280643272 hasRelatedWork W2386387936 @default.
- W4280643272 hasRelatedWork W2386897406 @default.
- W4280643272 hasRelatedWork W2392110728 @default.
- W4280643272 hasRelatedWork W2875263903 @default.
- W4280643272 hasRelatedWork W2899217644 @default.
- W4280643272 hasVolume "2022" @default.
- W4280643272 isParatext "false" @default.
- W4280643272 isRetracted "false" @default.
- W4280643272 workType "article" @default.