Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280644017> ?p ?o ?g. }
- W4280644017 abstract "Rapid seismic damage evaluation of subway stations is critical for the efficient decision on the repair methods to damaged subway stations caused by earthquakes and rapid recovery of subway networks without much delay. However, the current methods to evaluate the damage state of a subway station after earthquakes are mainly field investigation by manual or computer vision, which is dangerous and time-consuming. Given this, a novel methodology that adopts machine learning techniques as the classification model to rapidly and accurately evaluate the post-earthquake damage state of subway stations is proposed. Four machine learning techniques including artificial neural networks (ANNs), support vector machine (SVM), random forest (RF), and logistic regression (LR) are adopted. The interrelated intensity measures of ground motions (IMs) and their uncorrelated principal components (PCs) are, respectively, taken as the input to find the most suitable classification model as well as to investigate how the correlation among IMs affects the performance of these models. The results show that the LR taking IMs as inputs provides the best performance as it has the highest accuracy (87.7%) as well as stable performance. Additionally, taking PCs as input can improve the performance of RF, while for ANN, SVM, and LR, taking PCs as input will reduce their prediction performance. The research conclusions can provide a reference for the selection of the machine learning technique and its inputs when establishing a rapid assessment model for the post-earthquake damage state of subway stations." @default.
- W4280644017 created "2022-05-22" @default.
- W4280644017 creator A5074897630 @default.
- W4280644017 creator A5082295616 @default.
- W4280644017 creator A5084556374 @default.
- W4280644017 date "2022-07-29" @default.
- W4280644017 modified "2023-10-05" @default.
- W4280644017 title "Rapid Seismic Damage Evaluation of Subway Stations Using Machine Learning Techniques" @default.
- W4280644017 cites W1967775139 @default.
- W4280644017 cites W1972490689 @default.
- W4280644017 cites W2002796482 @default.
- W4280644017 cites W2003272171 @default.
- W4280644017 cites W2047409389 @default.
- W4280644017 cites W2051918538 @default.
- W4280644017 cites W2067768222 @default.
- W4280644017 cites W2166248717 @default.
- W4280644017 cites W2251829728 @default.
- W4280644017 cites W2302049712 @default.
- W4280644017 cites W2530941511 @default.
- W4280644017 cites W2561085555 @default.
- W4280644017 cites W2569557400 @default.
- W4280644017 cites W2614742406 @default.
- W4280644017 cites W2615808098 @default.
- W4280644017 cites W2738028097 @default.
- W4280644017 cites W2775484290 @default.
- W4280644017 cites W2789879631 @default.
- W4280644017 cites W2793734850 @default.
- W4280644017 cites W2795158543 @default.
- W4280644017 cites W2807042118 @default.
- W4280644017 cites W2888265462 @default.
- W4280644017 cites W2911966426 @default.
- W4280644017 cites W2913029471 @default.
- W4280644017 cites W2930890426 @default.
- W4280644017 cites W2939392611 @default.
- W4280644017 cites W2946752227 @default.
- W4280644017 cites W2969743514 @default.
- W4280644017 cites W2972344664 @default.
- W4280644017 cites W2973792972 @default.
- W4280644017 cites W2974551902 @default.
- W4280644017 cites W2981416566 @default.
- W4280644017 cites W2983781286 @default.
- W4280644017 cites W2997731800 @default.
- W4280644017 cites W3004047739 @default.
- W4280644017 cites W3004499010 @default.
- W4280644017 cites W3006391155 @default.
- W4280644017 cites W3009248401 @default.
- W4280644017 cites W3010857226 @default.
- W4280644017 cites W3016826380 @default.
- W4280644017 cites W3039293016 @default.
- W4280644017 cites W3046705597 @default.
- W4280644017 cites W3048080272 @default.
- W4280644017 cites W3071917396 @default.
- W4280644017 cites W3089246515 @default.
- W4280644017 cites W3105122749 @default.
- W4280644017 cites W3127183253 @default.
- W4280644017 cites W3131571644 @default.
- W4280644017 cites W3152588477 @default.
- W4280644017 cites W3196242262 @default.
- W4280644017 cites W3204987089 @default.
- W4280644017 cites W3209648160 @default.
- W4280644017 cites W4231480352 @default.
- W4280644017 cites W4299689471 @default.
- W4280644017 doi "https://doi.org/10.1142/s0219876221430179" @default.
- W4280644017 hasPublicationYear "2022" @default.
- W4280644017 type Work @default.
- W4280644017 citedByCount "1" @default.
- W4280644017 countsByYear W42806440172023 @default.
- W4280644017 crossrefType "journal-article" @default.
- W4280644017 hasAuthorship W4280644017A5074897630 @default.
- W4280644017 hasAuthorship W4280644017A5082295616 @default.
- W4280644017 hasAuthorship W4280644017A5084556374 @default.
- W4280644017 hasConcept C119857082 @default.
- W4280644017 hasConcept C12267149 @default.
- W4280644017 hasConcept C124101348 @default.
- W4280644017 hasConcept C154945302 @default.
- W4280644017 hasConcept C169258074 @default.
- W4280644017 hasConcept C202444582 @default.
- W4280644017 hasConcept C33923547 @default.
- W4280644017 hasConcept C41008148 @default.
- W4280644017 hasConcept C50644808 @default.
- W4280644017 hasConcept C9652623 @default.
- W4280644017 hasConceptScore W4280644017C119857082 @default.
- W4280644017 hasConceptScore W4280644017C12267149 @default.
- W4280644017 hasConceptScore W4280644017C124101348 @default.
- W4280644017 hasConceptScore W4280644017C154945302 @default.
- W4280644017 hasConceptScore W4280644017C169258074 @default.
- W4280644017 hasConceptScore W4280644017C202444582 @default.
- W4280644017 hasConceptScore W4280644017C33923547 @default.
- W4280644017 hasConceptScore W4280644017C41008148 @default.
- W4280644017 hasConceptScore W4280644017C50644808 @default.
- W4280644017 hasConceptScore W4280644017C9652623 @default.
- W4280644017 hasFunder F4320327031 @default.
- W4280644017 hasFunder F4320335787 @default.
- W4280644017 hasIssue "07" @default.
- W4280644017 hasLocation W42806440171 @default.
- W4280644017 hasOpenAccess W4280644017 @default.
- W4280644017 hasPrimaryLocation W42806440171 @default.
- W4280644017 hasRelatedWork W1996541855 @default.
- W4280644017 hasRelatedWork W2985924212 @default.
- W4280644017 hasRelatedWork W3195168932 @default.