Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280650186> ?p ?o ?g. }
- W4280650186 endingPage "101292" @default.
- W4280650186 startingPage "101292" @default.
- W4280650186 abstract "• We have constructed the latest dataset that contains diverse data of the most influential AI scholars (as of 2020) by integrating a variety of web resources. • We provided an in-depth analysis of the overall educational characteristics of AI scholars. • We analyzed the differences in the effect of different educational factors on the research productivity of AI researchers in the industry and academia, gaining an extensive understanding of the factors that drive the success of AI talent. The early academic beginning is critical in the development of a researcher's academic career because it helps determine one's further success. We aim to shed light on the path that drives the success of talents in the field of artificial intelligence (AI) by investigating the academic education background of distinguished AI researchers and analyzing the contribution of different educational factors to their research performance. In this study, we collected and coded the curriculum vitae of 1832 AI researchers. Results show that most AI researchers were educated in the United States and obtained their highest degrees from top universities. As for their educational background, approximately 18.27% of AI researchers chose non-AI majors, such as mathematics, physics, and chemistry, instead of AI-related majors, such as computer science. Furthermore, negative binomial regression analysis demonstrates that individuals who publish more during study period will have better research output, whether they are currently in academia or industry. Researchers in academia with overseas degrees published more articles than those without overseas degrees. In terms of interdisciplinary education, a mathematics background leads to increased research visibility of AI researchers in the industry but depresses the scholarly productivity of AI researchers in academia. Academic qualification is the main factor determining the scientific performance of AI researchers in industry, which is not the case in academia. The analysis also showed that individuals who graduated from more prestigious universities tended to receive more citations than those graduating from less famous universities. Moreover, AI researchers in academia who have graduated from prestigious universities seem to pay more attention to the quality of the papers rather than the quantity." @default.
- W4280650186 created "2022-05-22" @default.
- W4280650186 creator A5004697823 @default.
- W4280650186 creator A5035358476 @default.
- W4280650186 creator A5050908344 @default.
- W4280650186 creator A5052386960 @default.
- W4280650186 date "2022-05-01" @default.
- W4280650186 modified "2023-09-29" @default.
- W4280650186 title "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence" @default.
- W4280650186 cites W1043101226 @default.
- W4280650186 cites W1887814245 @default.
- W4280650186 cites W1915395594 @default.
- W4280650186 cites W1925030161 @default.
- W4280650186 cites W1954988134 @default.
- W4280650186 cites W1963738688 @default.
- W4280650186 cites W1970394697 @default.
- W4280650186 cites W1970957065 @default.
- W4280650186 cites W1975082274 @default.
- W4280650186 cites W1976029991 @default.
- W4280650186 cites W1982142842 @default.
- W4280650186 cites W1990434609 @default.
- W4280650186 cites W1992306829 @default.
- W4280650186 cites W1993183156 @default.
- W4280650186 cites W1994045724 @default.
- W4280650186 cites W2000300054 @default.
- W4280650186 cites W2004424554 @default.
- W4280650186 cites W2005247412 @default.
- W4280650186 cites W2016516612 @default.
- W4280650186 cites W2024766536 @default.
- W4280650186 cites W2038854133 @default.
- W4280650186 cites W2045548434 @default.
- W4280650186 cites W2047000140 @default.
- W4280650186 cites W2049523242 @default.
- W4280650186 cites W2050990045 @default.
- W4280650186 cites W2054366073 @default.
- W4280650186 cites W2057831175 @default.
- W4280650186 cites W2060789134 @default.
- W4280650186 cites W2065008280 @default.
- W4280650186 cites W2076113539 @default.
- W4280650186 cites W2090960911 @default.
- W4280650186 cites W2092911214 @default.
- W4280650186 cites W2098394689 @default.
- W4280650186 cites W2141620907 @default.
- W4280650186 cites W2163948742 @default.
- W4280650186 cites W2164272288 @default.
- W4280650186 cites W2166055197 @default.
- W4280650186 cites W2168366344 @default.
- W4280650186 cites W2209241876 @default.
- W4280650186 cites W2269538749 @default.
- W4280650186 cites W2423415261 @default.
- W4280650186 cites W2468566926 @default.
- W4280650186 cites W2504131332 @default.
- W4280650186 cites W2510406529 @default.
- W4280650186 cites W2559394418 @default.
- W4280650186 cites W2565597050 @default.
- W4280650186 cites W2605839703 @default.
- W4280650186 cites W2752473746 @default.
- W4280650186 cites W2775599610 @default.
- W4280650186 cites W2794298852 @default.
- W4280650186 cites W2899230772 @default.
- W4280650186 cites W2902748977 @default.
- W4280650186 cites W2912698222 @default.
- W4280650186 cites W2949684159 @default.
- W4280650186 cites W2970683389 @default.
- W4280650186 cites W2983135935 @default.
- W4280650186 cites W3034702370 @default.
- W4280650186 cites W3043218509 @default.
- W4280650186 cites W3080404861 @default.
- W4280650186 cites W3081877959 @default.
- W4280650186 cites W3091674611 @default.
- W4280650186 cites W3100944201 @default.
- W4280650186 cites W3108797169 @default.
- W4280650186 cites W3125239474 @default.
- W4280650186 cites W3136739679 @default.
- W4280650186 cites W31711046 @default.
- W4280650186 cites W3176818093 @default.
- W4280650186 cites W3199747527 @default.
- W4280650186 cites W362522136 @default.
- W4280650186 cites W4232218034 @default.
- W4280650186 doi "https://doi.org/10.1016/j.joi.2022.101292" @default.
- W4280650186 hasPublicationYear "2022" @default.
- W4280650186 type Work @default.
- W4280650186 citedByCount "2" @default.
- W4280650186 countsByYear W42806501862023 @default.
- W4280650186 crossrefType "journal-article" @default.
- W4280650186 hasAuthorship W4280650186A5004697823 @default.
- W4280650186 hasAuthorship W4280650186A5035358476 @default.
- W4280650186 hasAuthorship W4280650186A5050908344 @default.
- W4280650186 hasAuthorship W4280650186A5052386960 @default.
- W4280650186 hasConcept C120912362 @default.
- W4280650186 hasConcept C136197465 @default.
- W4280650186 hasConcept C139719470 @default.
- W4280650186 hasConcept C145420912 @default.
- W4280650186 hasConcept C154945302 @default.
- W4280650186 hasConcept C15744967 @default.
- W4280650186 hasConcept C162324750 @default.
- W4280650186 hasConcept C17744445 @default.
- W4280650186 hasConcept C19417346 @default.