Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281219> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4281219 abstract "The theory of T-convergence is an important tool in Calculus of Variations, because the equicoercivity and the T-convergence of a sequence of functionals F ∊ to F o imply the weak convergence of minima (u ∊ → u 0) and the convergence of F ∊(ue) to F 0(u o). Unfortunately, in the general case, the T-convergence of F ∊ to F o do not imply the Γ-convergence of (F ∊ + G) to (F o + G). Thus, if we want study the convergence of the sequence u ∊, where u ∊ is a minimum of F ∊ over the convex set $$K(psi ) = left{ {upsilon in W_o^{s,p}(Omega ){rm{ }}upsilon ge psi {rm{ a}}{rm{.e}}{rm{. in }}Omega } right}$$we must proof the Γ—convergence of $$({F_ in } + delta ({rm K}(psi ))) {rm{to (}}{F_o} + delta ({rm{K(}}psi {rm{)))}}{rm{.}}$$The point of view we adopt is the minimization of functionals: thus no Euler equation will be really written." @default.
- W4281219 created "2016-06-24" @default.
- W4281219 creator A5066349327 @default.
- W4281219 date "1989-01-01" @default.
- W4281219 modified "2023-09-25" @default.
- W4281219 title "L ∞ and L 1 Variations on a Theme of Γ-Convergence" @default.
- W4281219 cites W1968656921 @default.
- W4281219 cites W2012792888 @default.
- W4281219 cites W2035031658 @default.
- W4281219 cites W2048579274 @default.
- W4281219 doi "https://doi.org/10.1007/978-1-4615-9828-2_6" @default.
- W4281219 hasPublicationYear "1989" @default.
- W4281219 type Work @default.
- W4281219 sameAs 4281219 @default.
- W4281219 citedByCount "0" @default.
- W4281219 crossrefType "book-chapter" @default.
- W4281219 hasAuthorship W4281219A5066349327 @default.
- W4281219 hasConcept C114614502 @default.
- W4281219 hasConcept C121332964 @default.
- W4281219 hasConcept C162324750 @default.
- W4281219 hasConcept C185592680 @default.
- W4281219 hasConcept C2777303404 @default.
- W4281219 hasConcept C2778112365 @default.
- W4281219 hasConcept C2779557605 @default.
- W4281219 hasConcept C33923547 @default.
- W4281219 hasConcept C50522688 @default.
- W4281219 hasConcept C55493867 @default.
- W4281219 hasConcept C62520636 @default.
- W4281219 hasConceptScore W4281219C114614502 @default.
- W4281219 hasConceptScore W4281219C121332964 @default.
- W4281219 hasConceptScore W4281219C162324750 @default.
- W4281219 hasConceptScore W4281219C185592680 @default.
- W4281219 hasConceptScore W4281219C2777303404 @default.
- W4281219 hasConceptScore W4281219C2778112365 @default.
- W4281219 hasConceptScore W4281219C2779557605 @default.
- W4281219 hasConceptScore W4281219C33923547 @default.
- W4281219 hasConceptScore W4281219C50522688 @default.
- W4281219 hasConceptScore W4281219C55493867 @default.
- W4281219 hasConceptScore W4281219C62520636 @default.
- W4281219 hasLocation W42812191 @default.
- W4281219 hasOpenAccess W4281219 @default.
- W4281219 hasPrimaryLocation W42812191 @default.
- W4281219 hasRelatedWork W127770097 @default.
- W4281219 hasRelatedWork W1482008517 @default.
- W4281219 hasRelatedWork W1521289493 @default.
- W4281219 hasRelatedWork W1624288766 @default.
- W4281219 hasRelatedWork W1973549412 @default.
- W4281219 hasRelatedWork W1977089734 @default.
- W4281219 hasRelatedWork W2032016461 @default.
- W4281219 hasRelatedWork W2064737308 @default.
- W4281219 hasRelatedWork W2079027973 @default.
- W4281219 hasRelatedWork W2095404442 @default.
- W4281219 hasRelatedWork W2153490030 @default.
- W4281219 hasRelatedWork W2231513752 @default.
- W4281219 hasRelatedWork W2341473222 @default.
- W4281219 hasRelatedWork W2516206430 @default.
- W4281219 hasRelatedWork W2523359937 @default.
- W4281219 hasRelatedWork W2613489348 @default.
- W4281219 hasRelatedWork W2751570360 @default.
- W4281219 hasRelatedWork W2884615239 @default.
- W4281219 hasRelatedWork W2949852160 @default.
- W4281219 hasRelatedWork W2963071613 @default.
- W4281219 isParatext "false" @default.
- W4281219 isRetracted "false" @default.
- W4281219 magId "4281219" @default.
- W4281219 workType "book-chapter" @default.