Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281255908> ?p ?o ?g. }
- W4281255908 endingPage "16" @default.
- W4281255908 startingPage "1" @default.
- W4281255908 abstract "Network Intrusion Detection Systems (NIDSs) have become standard security solutions that endeavours to discover unauthorized access to an organizational computer network by scrutinizing incoming and outgoing network traffic for signs of malicious activity. In recent years, deep learning based NIDSs have emerged as an active area of research in cybersecurity and several surveys have been done on these systems. Although a plethora of surveys exists covering this burgeoning body of research, there lacks in the literature an empirical analysis of the different hybrid deep learning models. This paper presents a review of hybrid deep learning models for network intrusion detection and pinpoints their characteristics which researchers and practitioners are exploiting to develop modern NIDSs. The paper first elucidates the concept of network intrusion detection systems. Secondly, the taxonomy of hybrid deep learning techniques employed in designing NIDSs is presented. Lastly, a survey of the hybrid deep learning based NIDS is presented. The study adopted the systematic literature review methodology, a formal and systematic procedure by conducting bibliographic review, while defining explicit protocols for obtaining information. The survey results suggest that hybrid deep learning-based models yield desirable performance compared to other deep learning algorithms. The results also indicate that optimization, empirical risk minimization and model complexity control are the most important characteristics in the design of hybrid deep learning-based models. Lastly, key issues in the literature exposed in the research survey are discussed and then propose several potential future directions for researchers and practitioners in the design of deep learning methods for network intrusion detection." @default.
- W4281255908 created "2022-05-23" @default.
- W4281255908 creator A5040248606 @default.
- W4281255908 creator A5051907390 @default.
- W4281255908 creator A5068044468 @default.
- W4281255908 date "2022-06-30" @default.
- W4281255908 modified "2023-09-26" @default.
- W4281255908 title "Network Intrusion Detection Systems: A Systematic Literature Review o f Hybrid Deep Learning Approaches" @default.
- W4281255908 cites W1827781415 @default.
- W4281255908 cites W1969701420 @default.
- W4281255908 cites W1971735090 @default.
- W4281255908 cites W2006240266 @default.
- W4281255908 cites W2009882563 @default.
- W4281255908 cites W2073492708 @default.
- W4281255908 cites W2137983211 @default.
- W4281255908 cites W2150847526 @default.
- W4281255908 cites W2161374186 @default.
- W4281255908 cites W2278186031 @default.
- W4281255908 cites W2529525882 @default.
- W4281255908 cites W2565225715 @default.
- W4281255908 cites W2594265094 @default.
- W4281255908 cites W2678934292 @default.
- W4281255908 cites W2772283936 @default.
- W4281255908 cites W2772317693 @default.
- W4281255908 cites W2796013264 @default.
- W4281255908 cites W2803881474 @default.
- W4281255908 cites W2890507837 @default.
- W4281255908 cites W2901073342 @default.
- W4281255908 cites W2908109501 @default.
- W4281255908 cites W2908941882 @default.
- W4281255908 cites W2910381306 @default.
- W4281255908 cites W2925211503 @default.
- W4281255908 cites W2926701059 @default.
- W4281255908 cites W2928842143 @default.
- W4281255908 cites W2937220155 @default.
- W4281255908 cites W2941257018 @default.
- W4281255908 cites W2947802941 @default.
- W4281255908 cites W2949528415 @default.
- W4281255908 cites W2958285686 @default.
- W4281255908 cites W2959428502 @default.
- W4281255908 cites W2959716986 @default.
- W4281255908 cites W2962700793 @default.
- W4281255908 cites W2976972209 @default.
- W4281255908 cites W2980115220 @default.
- W4281255908 cites W2981360785 @default.
- W4281255908 cites W2982575942 @default.
- W4281255908 cites W2986055611 @default.
- W4281255908 cites W2994891734 @default.
- W4281255908 cites W2999585430 @default.
- W4281255908 cites W3004577623 @default.
- W4281255908 cites W3006761813 @default.
- W4281255908 cites W3007253500 @default.
- W4281255908 cites W3007769500 @default.
- W4281255908 cites W3011446929 @default.
- W4281255908 cites W3011561529 @default.
- W4281255908 cites W3014995922 @default.
- W4281255908 cites W3016266335 @default.
- W4281255908 cites W3017794714 @default.
- W4281255908 cites W3023906497 @default.
- W4281255908 cites W3031475976 @default.
- W4281255908 cites W3033701124 @default.
- W4281255908 cites W3034995119 @default.
- W4281255908 cites W3036449480 @default.
- W4281255908 cites W3038731719 @default.
- W4281255908 cites W3039471640 @default.
- W4281255908 cites W3044775537 @default.
- W4281255908 cites W3049204557 @default.
- W4281255908 cites W3082065751 @default.
- W4281255908 cites W3082603384 @default.
- W4281255908 cites W3088067349 @default.
- W4281255908 cites W3088202113 @default.
- W4281255908 cites W3093410479 @default.
- W4281255908 cites W3095531713 @default.
- W4281255908 cites W3096927290 @default.
- W4281255908 cites W3097359711 @default.
- W4281255908 cites W3097911904 @default.
- W4281255908 cites W3101017602 @default.
- W4281255908 cites W3125537303 @default.
- W4281255908 cites W3125540236 @default.
- W4281255908 cites W3126062866 @default.
- W4281255908 cites W3129233117 @default.
- W4281255908 cites W3131315318 @default.
- W4281255908 cites W3156821156 @default.
- W4281255908 cites W3157280532 @default.
- W4281255908 cites W3160455160 @default.
- W4281255908 cites W3164186892 @default.
- W4281255908 cites W3166483780 @default.
- W4281255908 cites W3167091510 @default.
- W4281255908 cites W3175660521 @default.
- W4281255908 cites W3177795942 @default.
- W4281255908 cites W3180597373 @default.
- W4281255908 cites W3181028547 @default.
- W4281255908 cites W3184813631 @default.
- W4281255908 cites W3184839167 @default.
- W4281255908 cites W3185928824 @default.
- W4281255908 cites W3187431941 @default.
- W4281255908 cites W3194483802 @default.
- W4281255908 cites W3194540614 @default.