Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281258963> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4281258963 abstract "Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple object priors. Recent application of deep learning methods for image reconstruction provides a successful data-driven approach to addressing the challenges when reconstructing images with measurement undersampling or various types of noise. In this work, we propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction. The proposed learning formulation leverages both sparsity or unsupervised learning-based priors and neural network reconstructors to simulate a fixed-point iteration process. Each proposed trained block consists of a deterministic MBIR solver and a neural network. The information flows in parallel through these two reconstructors and is then optimally combined, and multiple such blocks are cascaded to form a reconstruction pipeline. We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data, where we use the NIH AAPM Mayo Clinic Low Dose CT Grand Challenge dataset for training and testing. In our experiments, we study combinations of supervised deep network reconstructors and sparse representations-based (unsupervised) learned or analytical priors. Our results demonstrate the promising performance of the proposed framework compared to recent reconstruction methods." @default.
- W4281258963 created "2022-05-23" @default.
- W4281258963 creator A5000490843 @default.
- W4281258963 creator A5026237893 @default.
- W4281258963 creator A5057762207 @default.
- W4281258963 creator A5058676706 @default.
- W4281258963 date "2022-10-18" @default.
- W4281258963 modified "2023-09-30" @default.
- W4281258963 title "Combining deep learning and adaptive sparse modeling for low-dose CT reconstruction" @default.
- W4281258963 cites W2094366314 @default.
- W4281258963 cites W2157812230 @default.
- W4281258963 cites W2795777276 @default.
- W4281258963 cites W3103528285 @default.
- W4281258963 cites W3177546765 @default.
- W4281258963 cites W4200409436 @default.
- W4281258963 doi "https://doi.org/10.1117/12.2647190" @default.
- W4281258963 hasPublicationYear "2022" @default.
- W4281258963 type Work @default.
- W4281258963 citedByCount "0" @default.
- W4281258963 crossrefType "proceedings-article" @default.
- W4281258963 hasAuthorship W4281258963A5000490843 @default.
- W4281258963 hasAuthorship W4281258963A5026237893 @default.
- W4281258963 hasAuthorship W4281258963A5057762207 @default.
- W4281258963 hasAuthorship W4281258963A5058676706 @default.
- W4281258963 hasBestOaLocation W42812589631 @default.
- W4281258963 hasConcept C107673813 @default.
- W4281258963 hasConcept C108583219 @default.
- W4281258963 hasConcept C115961682 @default.
- W4281258963 hasConcept C119857082 @default.
- W4281258963 hasConcept C136536468 @default.
- W4281258963 hasConcept C141379421 @default.
- W4281258963 hasConcept C153180895 @default.
- W4281258963 hasConcept C154945302 @default.
- W4281258963 hasConcept C177769412 @default.
- W4281258963 hasConcept C199360897 @default.
- W4281258963 hasConcept C41008148 @default.
- W4281258963 hasConcept C43521106 @default.
- W4281258963 hasConcept C50644808 @default.
- W4281258963 hasConcept C8038995 @default.
- W4281258963 hasConcept C99498987 @default.
- W4281258963 hasConceptScore W4281258963C107673813 @default.
- W4281258963 hasConceptScore W4281258963C108583219 @default.
- W4281258963 hasConceptScore W4281258963C115961682 @default.
- W4281258963 hasConceptScore W4281258963C119857082 @default.
- W4281258963 hasConceptScore W4281258963C136536468 @default.
- W4281258963 hasConceptScore W4281258963C141379421 @default.
- W4281258963 hasConceptScore W4281258963C153180895 @default.
- W4281258963 hasConceptScore W4281258963C154945302 @default.
- W4281258963 hasConceptScore W4281258963C177769412 @default.
- W4281258963 hasConceptScore W4281258963C199360897 @default.
- W4281258963 hasConceptScore W4281258963C41008148 @default.
- W4281258963 hasConceptScore W4281258963C43521106 @default.
- W4281258963 hasConceptScore W4281258963C50644808 @default.
- W4281258963 hasConceptScore W4281258963C8038995 @default.
- W4281258963 hasConceptScore W4281258963C99498987 @default.
- W4281258963 hasLocation W42812589631 @default.
- W4281258963 hasLocation W42812589632 @default.
- W4281258963 hasOpenAccess W4281258963 @default.
- W4281258963 hasPrimaryLocation W42812589631 @default.
- W4281258963 hasRelatedWork W2597787948 @default.
- W4281258963 hasRelatedWork W3123344745 @default.
- W4281258963 hasRelatedWork W3192794374 @default.
- W4281258963 hasRelatedWork W3208584567 @default.
- W4281258963 hasRelatedWork W4221031031 @default.
- W4281258963 hasRelatedWork W4223943233 @default.
- W4281258963 hasRelatedWork W4246751904 @default.
- W4281258963 hasRelatedWork W4302303815 @default.
- W4281258963 hasRelatedWork W4319781722 @default.
- W4281258963 hasRelatedWork W4380075502 @default.
- W4281258963 isParatext "false" @default.
- W4281258963 isRetracted "false" @default.
- W4281258963 workType "article" @default.