Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281259517> ?p ?o ?g. }
- W4281259517 endingPage "6292" @default.
- W4281259517 startingPage "6292" @default.
- W4281259517 abstract "Fine particulate matter (PM2.5) has a continuing impact on the environment, climate change and human health. In order to improve the accuracy of PM2.5 estimation and obtain a continuous spatial distribution of PM2.5 concentration, this paper proposes a LUR-GBM model based on land-use regression (LUR), the Kriging method and LightGBM (light gradient boosting machine). Firstly, this study modelled the spatial distribution of PM2.5 in the Chinese region by obtaining PM2.5 concentration data from monitoring stations in the Chinese study region and established a PM2.5 mass concentration estimation method based on the LUR-GBM model by combining data on land use type, meteorology, topography, vegetation index, population density, traffic and pollution sources. Secondly, the performance of the LUR-GBM model was evaluated by a ten-fold cross-validation method based on samples, stations and time. Finally, the results of the model proposed in this paper are compared with those of the back propagation neural network (BPNN), deep neural network (DNN), random forest (RF), XGBoost and LightGBM models. The results show that the prediction accuracy of the LUR-GBM model is better than other models, with the R2 of the model reaching 0.964 (spring), 0.91 (summer), 0.967 (autumn), 0.98 (winter) and 0.976 (average for 2016–2021) for each season and annual average, respectively. It can be seen that the LUR-GBM model has good applicability in simulating the spatial distribution of PM2.5 concentrations in China. The spatial distribution of PM2.5 concentrations in the Chinese region shows a clear characteristic of high in the east and low in the west, and the spatial distribution is strongly influenced by topographical factors. The seasonal variation in mean concentration values is marked by low summer and high winter values. The results of this study can provide a scientific basis for the prevention and control of regional PM2.5 pollution in China and can also provide new ideas for the acquisition of data on the spatial distribution of PM2.5 concentrations within cities." @default.
- W4281259517 created "2022-05-23" @default.
- W4281259517 creator A5021800924 @default.
- W4281259517 creator A5023937461 @default.
- W4281259517 creator A5031146471 @default.
- W4281259517 creator A5065039074 @default.
- W4281259517 creator A5067221645 @default.
- W4281259517 date "2022-05-22" @default.
- W4281259517 modified "2023-09-25" @default.
- W4281259517 title "Spatio-Temporal Characteristics of PM2.5 Concentrations in China Based on Multiple Sources of Data and LUR-GBM during 2016–2021" @default.
- W4281259517 cites W2005225207 @default.
- W4281259517 cites W2028163949 @default.
- W4281259517 cites W2057829983 @default.
- W4281259517 cites W2071248725 @default.
- W4281259517 cites W2081990052 @default.
- W4281259517 cites W2098637521 @default.
- W4281259517 cites W2119362352 @default.
- W4281259517 cites W2281847536 @default.
- W4281259517 cites W2301552301 @default.
- W4281259517 cites W2323483937 @default.
- W4281259517 cites W2331980481 @default.
- W4281259517 cites W2480175994 @default.
- W4281259517 cites W2559999825 @default.
- W4281259517 cites W2588978790 @default.
- W4281259517 cites W2753663805 @default.
- W4281259517 cites W2789849108 @default.
- W4281259517 cites W2790987946 @default.
- W4281259517 cites W2805027674 @default.
- W4281259517 cites W2865430977 @default.
- W4281259517 cites W2975444298 @default.
- W4281259517 cites W2988079113 @default.
- W4281259517 cites W2990989151 @default.
- W4281259517 cites W3087293925 @default.
- W4281259517 cites W3094981772 @default.
- W4281259517 cites W3113178943 @default.
- W4281259517 cites W3120249948 @default.
- W4281259517 cites W3133551833 @default.
- W4281259517 cites W3175896073 @default.
- W4281259517 cites W3188993651 @default.
- W4281259517 cites W3199371941 @default.
- W4281259517 cites W3201116745 @default.
- W4281259517 cites W3210647140 @default.
- W4281259517 cites W3212210567 @default.
- W4281259517 cites W3214865316 @default.
- W4281259517 cites W4200080298 @default.
- W4281259517 cites W4200569168 @default.
- W4281259517 cites W4205183511 @default.
- W4281259517 cites W4210420375 @default.
- W4281259517 cites W4220917664 @default.
- W4281259517 cites W4221072577 @default.
- W4281259517 cites W4224451672 @default.
- W4281259517 doi "https://doi.org/10.3390/ijerph19106292" @default.
- W4281259517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35627828" @default.
- W4281259517 hasPublicationYear "2022" @default.
- W4281259517 type Work @default.
- W4281259517 citedByCount "8" @default.
- W4281259517 countsByYear W42812595172022 @default.
- W4281259517 countsByYear W42812595172023 @default.
- W4281259517 crossrefType "journal-article" @default.
- W4281259517 hasAuthorship W4281259517A5021800924 @default.
- W4281259517 hasAuthorship W4281259517A5023937461 @default.
- W4281259517 hasAuthorship W4281259517A5031146471 @default.
- W4281259517 hasAuthorship W4281259517A5065039074 @default.
- W4281259517 hasAuthorship W4281259517A5067221645 @default.
- W4281259517 hasBestOaLocation W42812595171 @default.
- W4281259517 hasConcept C105795698 @default.
- W4281259517 hasConcept C119857082 @default.
- W4281259517 hasConcept C121332964 @default.
- W4281259517 hasConcept C126857682 @default.
- W4281259517 hasConcept C169258074 @default.
- W4281259517 hasConcept C2777016058 @default.
- W4281259517 hasConcept C33923547 @default.
- W4281259517 hasConcept C39432304 @default.
- W4281259517 hasConcept C41008148 @default.
- W4281259517 hasConcept C50644808 @default.
- W4281259517 hasConcept C70153297 @default.
- W4281259517 hasConcept C81692654 @default.
- W4281259517 hasConcept C97355855 @default.
- W4281259517 hasConceptScore W4281259517C105795698 @default.
- W4281259517 hasConceptScore W4281259517C119857082 @default.
- W4281259517 hasConceptScore W4281259517C121332964 @default.
- W4281259517 hasConceptScore W4281259517C126857682 @default.
- W4281259517 hasConceptScore W4281259517C169258074 @default.
- W4281259517 hasConceptScore W4281259517C2777016058 @default.
- W4281259517 hasConceptScore W4281259517C33923547 @default.
- W4281259517 hasConceptScore W4281259517C39432304 @default.
- W4281259517 hasConceptScore W4281259517C41008148 @default.
- W4281259517 hasConceptScore W4281259517C50644808 @default.
- W4281259517 hasConceptScore W4281259517C70153297 @default.
- W4281259517 hasConceptScore W4281259517C81692654 @default.
- W4281259517 hasConceptScore W4281259517C97355855 @default.
- W4281259517 hasFunder F4320321001 @default.
- W4281259517 hasIssue "10" @default.
- W4281259517 hasLocation W42812595171 @default.
- W4281259517 hasLocation W42812595172 @default.
- W4281259517 hasLocation W42812595173 @default.
- W4281259517 hasOpenAccess W4281259517 @default.
- W4281259517 hasPrimaryLocation W42812595171 @default.