Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281264425> ?p ?o ?g. }
- W4281264425 endingPage "101709" @default.
- W4281264425 startingPage "101709" @default.
- W4281264425 abstract "In material science, image segmentation is of great significance for quantitative analysis of microstructures. Here, we propose a novel Weighted Propagation Convolution Neural Network based on U-Net (WPU-Net) to detect boundary in poly-crystalline microscopic images. We introduce spatial consistency into network to eliminate the defects in raw microscopic image. And we customize adaptive boundary weight for each pixel in each grain, so that it leads the network to preserve grain’s geometric and topological characteristics. Moreover, we provide our dataset with the goal of advancing the development of image processing in materials science. Experiments demonstrate that the proposed method achieves promising performance in both of objective and subjective assessment. In boundary detection task, it reduces the error rate by 7%, which outperforms state-of-the-art methods by a large margin." @default.
- W4281264425 created "2022-05-23" @default.
- W4281264425 creator A5009624071 @default.
- W4281264425 creator A5023139838 @default.
- W4281264425 creator A5034630340 @default.
- W4281264425 creator A5050322657 @default.
- W4281264425 creator A5071037763 @default.
- W4281264425 creator A5072071140 @default.
- W4281264425 creator A5080102032 @default.
- W4281264425 creator A5091153886 @default.
- W4281264425 date "2022-07-01" @default.
- W4281264425 modified "2023-10-18" @default.
- W4281264425 title "Boundary learning by using weighted propagation in convolution network" @default.
- W4281264425 cites W1989500019 @default.
- W4281264425 cites W2019145770 @default.
- W4281264425 cites W2071336482 @default.
- W4281264425 cites W2093726900 @default.
- W4281264425 cites W2124786971 @default.
- W4281264425 cites W2157305458 @default.
- W4281264425 cites W2562457735 @default.
- W4281264425 cites W2564998703 @default.
- W4281264425 cites W2593277761 @default.
- W4281264425 cites W2599003897 @default.
- W4281264425 cites W2604468722 @default.
- W4281264425 cites W2796672611 @default.
- W4281264425 cites W2891109850 @default.
- W4281264425 cites W2953881420 @default.
- W4281264425 cites W2962682465 @default.
- W4281264425 cites W2963351448 @default.
- W4281264425 cites W3086140914 @default.
- W4281264425 cites W3088623196 @default.
- W4281264425 cites W3212798786 @default.
- W4281264425 doi "https://doi.org/10.1016/j.jocs.2022.101709" @default.
- W4281264425 hasPublicationYear "2022" @default.
- W4281264425 type Work @default.
- W4281264425 citedByCount "4" @default.
- W4281264425 countsByYear W42812644252022 @default.
- W4281264425 countsByYear W42812644252023 @default.
- W4281264425 crossrefType "journal-article" @default.
- W4281264425 hasAuthorship W4281264425A5009624071 @default.
- W4281264425 hasAuthorship W4281264425A5023139838 @default.
- W4281264425 hasAuthorship W4281264425A5034630340 @default.
- W4281264425 hasAuthorship W4281264425A5050322657 @default.
- W4281264425 hasAuthorship W4281264425A5071037763 @default.
- W4281264425 hasAuthorship W4281264425A5072071140 @default.
- W4281264425 hasAuthorship W4281264425A5080102032 @default.
- W4281264425 hasAuthorship W4281264425A5091153886 @default.
- W4281264425 hasBestOaLocation W42812644252 @default.
- W4281264425 hasConcept C11413529 @default.
- W4281264425 hasConcept C115961682 @default.
- W4281264425 hasConcept C119857082 @default.
- W4281264425 hasConcept C124504099 @default.
- W4281264425 hasConcept C134306372 @default.
- W4281264425 hasConcept C153180895 @default.
- W4281264425 hasConcept C154945302 @default.
- W4281264425 hasConcept C160633673 @default.
- W4281264425 hasConcept C2776436953 @default.
- W4281264425 hasConcept C33923547 @default.
- W4281264425 hasConcept C41008148 @default.
- W4281264425 hasConcept C45347329 @default.
- W4281264425 hasConcept C50644808 @default.
- W4281264425 hasConcept C62354387 @default.
- W4281264425 hasConcept C774472 @default.
- W4281264425 hasConcept C81363708 @default.
- W4281264425 hasConcept C89600930 @default.
- W4281264425 hasConceptScore W4281264425C11413529 @default.
- W4281264425 hasConceptScore W4281264425C115961682 @default.
- W4281264425 hasConceptScore W4281264425C119857082 @default.
- W4281264425 hasConceptScore W4281264425C124504099 @default.
- W4281264425 hasConceptScore W4281264425C134306372 @default.
- W4281264425 hasConceptScore W4281264425C153180895 @default.
- W4281264425 hasConceptScore W4281264425C154945302 @default.
- W4281264425 hasConceptScore W4281264425C160633673 @default.
- W4281264425 hasConceptScore W4281264425C2776436953 @default.
- W4281264425 hasConceptScore W4281264425C33923547 @default.
- W4281264425 hasConceptScore W4281264425C41008148 @default.
- W4281264425 hasConceptScore W4281264425C45347329 @default.
- W4281264425 hasConceptScore W4281264425C50644808 @default.
- W4281264425 hasConceptScore W4281264425C62354387 @default.
- W4281264425 hasConceptScore W4281264425C774472 @default.
- W4281264425 hasConceptScore W4281264425C81363708 @default.
- W4281264425 hasConceptScore W4281264425C89600930 @default.
- W4281264425 hasLocation W42812644251 @default.
- W4281264425 hasLocation W42812644252 @default.
- W4281264425 hasOpenAccess W4281264425 @default.
- W4281264425 hasPrimaryLocation W42812644251 @default.
- W4281264425 hasRelatedWork W2136485282 @default.
- W4281264425 hasRelatedWork W2546871836 @default.
- W4281264425 hasRelatedWork W2766634277 @default.
- W4281264425 hasRelatedWork W2767651786 @default.
- W4281264425 hasRelatedWork W2912288872 @default.
- W4281264425 hasRelatedWork W3173445760 @default.
- W4281264425 hasRelatedWork W4200528772 @default.
- W4281264425 hasRelatedWork W4287114296 @default.
- W4281264425 hasRelatedWork W4312417841 @default.
- W4281264425 hasRelatedWork W564581980 @default.
- W4281264425 hasVolume "62" @default.
- W4281264425 isParatext "false" @default.