Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281289704> ?p ?o ?g. }
- W4281289704 abstract "In this review, current studies on hospital readmission due to infection of COVID-19 were discussed, compared, and further evaluated in order to understand the current trends and progress in mitigation of hospital readmissions due to COVID-19. Boolean expression of (COVID-19 OR covid19 OR covid OR coronavirus OR Sars-CoV-2) AND (readmission OR re-admission OR rehospitalization OR rehospitalization) were used in five databases, namely Web of Science, Medline, Science Direct, Google Scholar and Scopus. From the search, a total of 253 articles were screened down to 26 articles. In overall, most of the research focus on readmission rates than mortality rate. On the readmission rate, the lowest is 4.2% by Ramos-Martínez et al. from Spain, and the highest is 19.9% by Donnelly et al. from the United States. Most of the research (n = 13) uses an inferential statistical approach in their studies, while only one uses a machine learning approach. The data size ranges from 79 to 126,137. However, there is no specific guide to set the most suitable data size for one research, and all results cannot be compared in terms of accuracy, as all research is regional studies and do not involve data from the multi region. The logistic regression is prevalent in the research on risk factors of readmission post-COVID-19 admission, despite each of the research coming out with different outcomes. From the word cloud, age is the most dominant risk factor of readmission, followed by diabetes, high length of stay, COPD, CKD, liver disease, metastatic disease, and CAD. A few future research directions has been proposed, including the utilization of machine learning in statistical analysis, investigation on dominant risk factors, experimental design on interventions to curb dominant risk factors and increase the scale of data collection from single centered to multi centered." @default.
- W4281289704 created "2022-05-24" @default.
- W4281289704 creator A5003091988 @default.
- W4281289704 creator A5006457038 @default.
- W4281289704 creator A5010786947 @default.
- W4281289704 creator A5018829722 @default.
- W4281289704 creator A5039237671 @default.
- W4281289704 creator A5052229178 @default.
- W4281289704 creator A5057573049 @default.
- W4281289704 creator A5060450772 @default.
- W4281289704 creator A5073626757 @default.
- W4281289704 creator A5081694258 @default.
- W4281289704 creator A5083116643 @default.
- W4281289704 creator A5084900407 @default.
- W4281289704 date "2022-05-23" @default.
- W4281289704 modified "2023-10-16" @default.
- W4281289704 title "Systematic Review on COVID-19 Readmission and Risk Factors: Future of Machine Learning in COVID-19 Readmission Studies" @default.
- W4281289704 cites W3048571713 @default.
- W4281289704 cites W3083768316 @default.
- W4281289704 cites W3094304964 @default.
- W4281289704 cites W3094558173 @default.
- W4281289704 cites W3102194671 @default.
- W4281289704 cites W3108299043 @default.
- W4281289704 cites W3113271342 @default.
- W4281289704 cites W3114794219 @default.
- W4281289704 cites W3123583746 @default.
- W4281289704 cites W3124900748 @default.
- W4281289704 cites W3125473664 @default.
- W4281289704 cites W3126500980 @default.
- W4281289704 cites W3135159306 @default.
- W4281289704 cites W3136564948 @default.
- W4281289704 cites W3137766503 @default.
- W4281289704 cites W3159568176 @default.
- W4281289704 cites W3162275756 @default.
- W4281289704 cites W3164557527 @default.
- W4281289704 cites W3164681826 @default.
- W4281289704 cites W3176890078 @default.
- W4281289704 cites W3186439499 @default.
- W4281289704 cites W3190798935 @default.
- W4281289704 cites W3193913853 @default.
- W4281289704 cites W3198307319 @default.
- W4281289704 cites W3201719717 @default.
- W4281289704 cites W3201920289 @default.
- W4281289704 cites W3204446367 @default.
- W4281289704 cites W3214830991 @default.
- W4281289704 doi "https://doi.org/10.3389/fpubh.2022.898254" @default.
- W4281289704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35677770" @default.
- W4281289704 hasPublicationYear "2022" @default.
- W4281289704 type Work @default.
- W4281289704 citedByCount "11" @default.
- W4281289704 countsByYear W42812897042022 @default.
- W4281289704 countsByYear W42812897042023 @default.
- W4281289704 crossrefType "journal-article" @default.
- W4281289704 hasAuthorship W4281289704A5003091988 @default.
- W4281289704 hasAuthorship W4281289704A5006457038 @default.
- W4281289704 hasAuthorship W4281289704A5010786947 @default.
- W4281289704 hasAuthorship W4281289704A5018829722 @default.
- W4281289704 hasAuthorship W4281289704A5039237671 @default.
- W4281289704 hasAuthorship W4281289704A5052229178 @default.
- W4281289704 hasAuthorship W4281289704A5057573049 @default.
- W4281289704 hasAuthorship W4281289704A5060450772 @default.
- W4281289704 hasAuthorship W4281289704A5073626757 @default.
- W4281289704 hasAuthorship W4281289704A5081694258 @default.
- W4281289704 hasAuthorship W4281289704A5083116643 @default.
- W4281289704 hasAuthorship W4281289704A5084900407 @default.
- W4281289704 hasBestOaLocation W42812897041 @default.
- W4281289704 hasConcept C126322002 @default.
- W4281289704 hasConcept C151956035 @default.
- W4281289704 hasConcept C17744445 @default.
- W4281289704 hasConcept C194828623 @default.
- W4281289704 hasConcept C199539241 @default.
- W4281289704 hasConcept C2779134260 @default.
- W4281289704 hasConcept C2779473830 @default.
- W4281289704 hasConcept C3007834351 @default.
- W4281289704 hasConcept C3008058167 @default.
- W4281289704 hasConcept C3020774429 @default.
- W4281289704 hasConcept C524204448 @default.
- W4281289704 hasConcept C71924100 @default.
- W4281289704 hasConcept C83867959 @default.
- W4281289704 hasConcept C95190672 @default.
- W4281289704 hasConceptScore W4281289704C126322002 @default.
- W4281289704 hasConceptScore W4281289704C151956035 @default.
- W4281289704 hasConceptScore W4281289704C17744445 @default.
- W4281289704 hasConceptScore W4281289704C194828623 @default.
- W4281289704 hasConceptScore W4281289704C199539241 @default.
- W4281289704 hasConceptScore W4281289704C2779134260 @default.
- W4281289704 hasConceptScore W4281289704C2779473830 @default.
- W4281289704 hasConceptScore W4281289704C3007834351 @default.
- W4281289704 hasConceptScore W4281289704C3008058167 @default.
- W4281289704 hasConceptScore W4281289704C3020774429 @default.
- W4281289704 hasConceptScore W4281289704C524204448 @default.
- W4281289704 hasConceptScore W4281289704C71924100 @default.
- W4281289704 hasConceptScore W4281289704C83867959 @default.
- W4281289704 hasConceptScore W4281289704C95190672 @default.
- W4281289704 hasLocation W42812897041 @default.
- W4281289704 hasLocation W42812897042 @default.
- W4281289704 hasLocation W42812897043 @default.
- W4281289704 hasOpenAccess W4281289704 @default.
- W4281289704 hasPrimaryLocation W42812897041 @default.
- W4281289704 hasRelatedWork W2006397591 @default.