Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281291806> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4281291806 abstract "As a diagnostic criterion for cancer, histopathology image analysis is quite critical for the subsequent therapeutic treatment of patients. Nowadays, the diagnosis is mainly depended on manually which is less precise and low-accuracy. To address the problem, we propose a novel screening framework combined image preprocess and AI approaches for the automatic detection of lymph node metastasis of colorectal cancer. First calculates the Histogram of Oriented Gradient (HOG) and Gray Level Cooccurrence Matrix (GLCM) of high-resolution digital images transformed from pathological sections. Statistical analysis show that Support Vector Machine (SVM) can be used to automatically identify cancerous areas. We further introduce deep learning models Convolutional Neural Network (CNN) into our framework, taking preprocessed images as inputs. The screening results demonstrate that the highest overlapping ratio can be achieved compared with manually annotation areas is 93.09% got by CNN, while another approaches SVM get an accuracy of 83.75%. The combination of image preprocess and deep learning can effectively improve the efficiency of lymph node metastasis screening in colorectal cancer and has great significance for the further development of Computer Aided Diagnosis (CAD) systems." @default.
- W4281291806 created "2022-05-24" @default.
- W4281291806 creator A5003681988 @default.
- W4281291806 creator A5021905687 @default.
- W4281291806 creator A5023214008 @default.
- W4281291806 creator A5059277742 @default.
- W4281291806 creator A5060490035 @default.
- W4281291806 creator A5079097258 @default.
- W4281291806 date "2022-01-14" @default.
- W4281291806 modified "2023-10-18" @default.
- W4281291806 title "A Novel Screening Framework for Lymph Node Metastasis in Colorectal Cancer Based on Deep Learning Approaches" @default.
- W4281291806 cites W2063241605 @default.
- W4281291806 cites W2085567353 @default.
- W4281291806 cites W2133059825 @default.
- W4281291806 cites W2510352715 @default.
- W4281291806 cites W2598799153 @default.
- W4281291806 cites W2749408252 @default.
- W4281291806 cites W2762067889 @default.
- W4281291806 cites W2791155853 @default.
- W4281291806 cites W2792481260 @default.
- W4281291806 cites W4245172903 @default.
- W4281291806 doi "https://doi.org/10.1145/3517077.3517082" @default.
- W4281291806 hasPublicationYear "2022" @default.
- W4281291806 type Work @default.
- W4281291806 citedByCount "0" @default.
- W4281291806 crossrefType "proceedings-article" @default.
- W4281291806 hasAuthorship W4281291806A5003681988 @default.
- W4281291806 hasAuthorship W4281291806A5021905687 @default.
- W4281291806 hasAuthorship W4281291806A5023214008 @default.
- W4281291806 hasAuthorship W4281291806A5059277742 @default.
- W4281291806 hasAuthorship W4281291806A5060490035 @default.
- W4281291806 hasAuthorship W4281291806A5079097258 @default.
- W4281291806 hasConcept C108583219 @default.
- W4281291806 hasConcept C115961682 @default.
- W4281291806 hasConcept C119857082 @default.
- W4281291806 hasConcept C121608353 @default.
- W4281291806 hasConcept C12267149 @default.
- W4281291806 hasConcept C126322002 @default.
- W4281291806 hasConcept C153180895 @default.
- W4281291806 hasConcept C154945302 @default.
- W4281291806 hasConcept C17426736 @default.
- W4281291806 hasConcept C2777522853 @default.
- W4281291806 hasConcept C2779013556 @default.
- W4281291806 hasConcept C2992571226 @default.
- W4281291806 hasConcept C41008148 @default.
- W4281291806 hasConcept C52622490 @default.
- W4281291806 hasConcept C526805850 @default.
- W4281291806 hasConcept C53533937 @default.
- W4281291806 hasConcept C71924100 @default.
- W4281291806 hasConcept C75294576 @default.
- W4281291806 hasConcept C81363708 @default.
- W4281291806 hasConceptScore W4281291806C108583219 @default.
- W4281291806 hasConceptScore W4281291806C115961682 @default.
- W4281291806 hasConceptScore W4281291806C119857082 @default.
- W4281291806 hasConceptScore W4281291806C121608353 @default.
- W4281291806 hasConceptScore W4281291806C12267149 @default.
- W4281291806 hasConceptScore W4281291806C126322002 @default.
- W4281291806 hasConceptScore W4281291806C153180895 @default.
- W4281291806 hasConceptScore W4281291806C154945302 @default.
- W4281291806 hasConceptScore W4281291806C17426736 @default.
- W4281291806 hasConceptScore W4281291806C2777522853 @default.
- W4281291806 hasConceptScore W4281291806C2779013556 @default.
- W4281291806 hasConceptScore W4281291806C2992571226 @default.
- W4281291806 hasConceptScore W4281291806C41008148 @default.
- W4281291806 hasConceptScore W4281291806C52622490 @default.
- W4281291806 hasConceptScore W4281291806C526805850 @default.
- W4281291806 hasConceptScore W4281291806C53533937 @default.
- W4281291806 hasConceptScore W4281291806C71924100 @default.
- W4281291806 hasConceptScore W4281291806C75294576 @default.
- W4281291806 hasConceptScore W4281291806C81363708 @default.
- W4281291806 hasLocation W42812918061 @default.
- W4281291806 hasOpenAccess W4281291806 @default.
- W4281291806 hasPrimaryLocation W42812918061 @default.
- W4281291806 hasRelatedWork W2087874231 @default.
- W4281291806 hasRelatedWork W2363530787 @default.
- W4281291806 hasRelatedWork W2412645770 @default.
- W4281291806 hasRelatedWork W2550539038 @default.
- W4281291806 hasRelatedWork W2732542196 @default.
- W4281291806 hasRelatedWork W3004377704 @default.
- W4281291806 hasRelatedWork W3011074480 @default.
- W4281291806 hasRelatedWork W3101572448 @default.
- W4281291806 hasRelatedWork W3156786002 @default.
- W4281291806 hasRelatedWork W4311257506 @default.
- W4281291806 isParatext "false" @default.
- W4281291806 isRetracted "false" @default.
- W4281291806 workType "article" @default.