Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281293346> ?p ?o ?g. }
- W4281293346 abstract "Abstract Downscaling techniques are effective to bridge the scale gap between global circulation models and regional studies. Statistical downscaling methods are prevalent due to their advantages in high computational efficiency and accuracy. However, an implicit assumption of most statistical techniques is that time series should be relatively stationary after certain function transformations. Otherwise, statistics of nonstationary time series may be meaningless for describing future behavior. In this study, a hybrid statistical downscaling framework was developed through integrating bivariate empirical mode decomposition (BEMD) and a machine learning method to extract multi‐timescale features from nonstationary data to enhance downscaling performance. The proposed framework can reduce the effects of non‐stationarity in data‐driven models by using the BEMD method, which can decompose time series into independent and stationary components at multiple time‐frequency resolutions. It was applied to downscale monthly precipitation and temperature of Canadian Earth System Model in multiple stations with different climate types in the Central Valley of California, USA, to verify its accuracy and generalization ability. The performance of downscaling maximum and minimum temperatures ( R 2 > 0.9) was more accurate than that of precipitation. The potential reason is that precipitation is more sensitive to transient weather phenomena, which can only be extracted from data with higher temporal resolution. The proposed model was further compared with models based on discrete wavelet transform and models without time series decomposition. The results showed that a decomposition strategy of the proposed framework can improve the downscaling accuracy, potentially providing a viable option to deal with the nonstationary of data in statistical downscaling models." @default.
- W4281293346 created "2022-05-24" @default.
- W4281293346 creator A5012949593 @default.
- W4281293346 creator A5055754648 @default.
- W4281293346 creator A5076801177 @default.
- W4281293346 date "2022-06-01" @default.
- W4281293346 modified "2023-09-27" @default.
- W4281293346 title "A Hybrid Statistical Downscaling Framework Based on Nonstationary Time Series Decomposition and Machine Learning" @default.
- W4281293346 cites W1518961975 @default.
- W4281293346 cites W1556483090 @default.
- W4281293346 cites W1624852024 @default.
- W4281293346 cites W1625562101 @default.
- W4281293346 cites W1992810039 @default.
- W4281293346 cites W2007221293 @default.
- W4281293346 cites W2014400276 @default.
- W4281293346 cites W2016406377 @default.
- W4281293346 cites W2044314337 @default.
- W4281293346 cites W2044781495 @default.
- W4281293346 cites W2048032753 @default.
- W4281293346 cites W2051739298 @default.
- W4281293346 cites W2052022886 @default.
- W4281293346 cites W2052138108 @default.
- W4281293346 cites W2052512613 @default.
- W4281293346 cites W2058580388 @default.
- W4281293346 cites W2068689590 @default.
- W4281293346 cites W2070310969 @default.
- W4281293346 cites W2072630381 @default.
- W4281293346 cites W2077664060 @default.
- W4281293346 cites W2081557600 @default.
- W4281293346 cites W2081641490 @default.
- W4281293346 cites W2088202114 @default.
- W4281293346 cites W2092391115 @default.
- W4281293346 cites W2093141926 @default.
- W4281293346 cites W2098395403 @default.
- W4281293346 cites W2099534828 @default.
- W4281293346 cites W2105880556 @default.
- W4281293346 cites W2117389412 @default.
- W4281293346 cites W2120390927 @default.
- W4281293346 cites W2122974524 @default.
- W4281293346 cites W2127170577 @default.
- W4281293346 cites W2132945047 @default.
- W4281293346 cites W2154603172 @default.
- W4281293346 cites W2162142087 @default.
- W4281293346 cites W2169721303 @default.
- W4281293346 cites W2172191993 @default.
- W4281293346 cites W2175846570 @default.
- W4281293346 cites W2292779425 @default.
- W4281293346 cites W2296955171 @default.
- W4281293346 cites W2543665400 @default.
- W4281293346 cites W2583757538 @default.
- W4281293346 cites W2618036425 @default.
- W4281293346 cites W2626930333 @default.
- W4281293346 cites W2769404436 @default.
- W4281293346 cites W2775056555 @default.
- W4281293346 cites W2792606736 @default.
- W4281293346 cites W2893774593 @default.
- W4281293346 cites W2898962279 @default.
- W4281293346 cites W2900806242 @default.
- W4281293346 cites W2911964244 @default.
- W4281293346 cites W2921706503 @default.
- W4281293346 cites W2974296449 @default.
- W4281293346 cites W3015828283 @default.
- W4281293346 cites W3087239190 @default.
- W4281293346 cites W3127258696 @default.
- W4281293346 cites W3163575657 @default.
- W4281293346 cites W3174076701 @default.
- W4281293346 doi "https://doi.org/10.1029/2022ea002221" @default.
- W4281293346 hasPublicationYear "2022" @default.
- W4281293346 type Work @default.
- W4281293346 citedByCount "0" @default.
- W4281293346 crossrefType "journal-article" @default.
- W4281293346 hasAuthorship W4281293346A5012949593 @default.
- W4281293346 hasAuthorship W4281293346A5055754648 @default.
- W4281293346 hasAuthorship W4281293346A5076801177 @default.
- W4281293346 hasBestOaLocation W42812933461 @default.
- W4281293346 hasConcept C106131492 @default.
- W4281293346 hasConcept C107054158 @default.
- W4281293346 hasConcept C119857082 @default.
- W4281293346 hasConcept C127313418 @default.
- W4281293346 hasConcept C134306372 @default.
- W4281293346 hasConcept C143724316 @default.
- W4281293346 hasConcept C151406439 @default.
- W4281293346 hasConcept C151730666 @default.
- W4281293346 hasConcept C153294291 @default.
- W4281293346 hasConcept C154945302 @default.
- W4281293346 hasConcept C177148314 @default.
- W4281293346 hasConcept C196216189 @default.
- W4281293346 hasConcept C205649164 @default.
- W4281293346 hasConcept C25570617 @default.
- W4281293346 hasConcept C31972630 @default.
- W4281293346 hasConcept C33923547 @default.
- W4281293346 hasConcept C41008148 @default.
- W4281293346 hasConcept C41156917 @default.
- W4281293346 hasConcept C47432892 @default.
- W4281293346 hasConceptScore W4281293346C106131492 @default.
- W4281293346 hasConceptScore W4281293346C107054158 @default.
- W4281293346 hasConceptScore W4281293346C119857082 @default.
- W4281293346 hasConceptScore W4281293346C127313418 @default.
- W4281293346 hasConceptScore W4281293346C134306372 @default.
- W4281293346 hasConceptScore W4281293346C143724316 @default.