Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281293834> ?p ?o ?g. }
- W4281293834 endingPage "109131" @default.
- W4281293834 startingPage "109131" @default.
- W4281293834 abstract "Lightweight cellulose nanocrystals/graphene hybrid aerogels (CGA) with highly porous and parallel-arrangement three-dimensional networks were fabricated via freezing-thawing under natural drying condition, which were used as scaffolds to prepare PEG@CGA composite phase change materials (PCG PCMs) by vacuum impregnation. Relative to PEG@GA (PG), PEG was tightly anchored into CGA due to capillary force and strong hydrogen bonding, and PCG kept the shape stability without any leakage upon melting point of PEG even under compression. The latent heat storage energy of PCG attained 183.2 J/g, which was 94.6% of that of pure PEG, still maintaining 89.7% even after 100 heating-cooling cycles. Moreover, PCG exhibited a high thermal conductivity, 175% and 60% higher than that of PEG and PG due to reduction of interfacial thermal resistance. Such strategy exhibits a promising perspective to obtain composite phase change materials with excellent shape stability, energy storage capacity and thermal conductivity for applications in energy storage. • Cellulose nanocrystals/graphene hybrid aerogel (CGA) with 3D network was prepared. • PEG@CGA phase change materials (PCG PCMs) were prepared by vacuum impregnation. • PCG PCMs exhibited high thermal conductivity and latent heat of fusion. • PCG PCMs had good shape stability even under compression due to hydrogen bonding." @default.
- W4281293834 created "2022-05-24" @default.
- W4281293834 creator A5007415330 @default.
- W4281293834 creator A5026752395 @default.
- W4281293834 creator A5033015806 @default.
- W4281293834 creator A5050530136 @default.
- W4281293834 creator A5086073352 @default.
- W4281293834 creator A5087450548 @default.
- W4281293834 date "2022-08-01" @default.
- W4281293834 modified "2023-10-17" @default.
- W4281293834 title "Engineering nanocellulose/graphene hybrid aerogel for form-stable composite phase change materials with high phase change enthalpy for energy storage" @default.
- W4281293834 cites W1859617839 @default.
- W4281293834 cites W1964225179 @default.
- W4281293834 cites W1977224439 @default.
- W4281293834 cites W1979043813 @default.
- W4281293834 cites W2000034834 @default.
- W4281293834 cites W2003883517 @default.
- W4281293834 cites W2025969707 @default.
- W4281293834 cites W2055170008 @default.
- W4281293834 cites W2075409469 @default.
- W4281293834 cites W2093963326 @default.
- W4281293834 cites W2096034660 @default.
- W4281293834 cites W2109111609 @default.
- W4281293834 cites W2109848473 @default.
- W4281293834 cites W2133211034 @default.
- W4281293834 cites W2210958799 @default.
- W4281293834 cites W2298911862 @default.
- W4281293834 cites W2498166671 @default.
- W4281293834 cites W2541623222 @default.
- W4281293834 cites W2566642082 @default.
- W4281293834 cites W2573792991 @default.
- W4281293834 cites W2617302538 @default.
- W4281293834 cites W2751126971 @default.
- W4281293834 cites W2784082812 @default.
- W4281293834 cites W2792511123 @default.
- W4281293834 cites W2796166826 @default.
- W4281293834 cites W2801575905 @default.
- W4281293834 cites W2888709760 @default.
- W4281293834 cites W2910920333 @default.
- W4281293834 cites W2923137744 @default.
- W4281293834 cites W2969701210 @default.
- W4281293834 cites W2971372760 @default.
- W4281293834 cites W2974849154 @default.
- W4281293834 cites W2986084405 @default.
- W4281293834 cites W2990535102 @default.
- W4281293834 cites W2990723444 @default.
- W4281293834 cites W2996977430 @default.
- W4281293834 cites W3020870335 @default.
- W4281293834 cites W3032771865 @default.
- W4281293834 cites W3037759332 @default.
- W4281293834 cites W3096740017 @default.
- W4281293834 cites W3099428474 @default.
- W4281293834 cites W3107986985 @default.
- W4281293834 cites W3111259700 @default.
- W4281293834 cites W3130679966 @default.
- W4281293834 cites W3153256626 @default.
- W4281293834 cites W3161357302 @default.
- W4281293834 cites W3164009022 @default.
- W4281293834 cites W3193566148 @default.
- W4281293834 cites W3200062729 @default.
- W4281293834 cites W3200335469 @default.
- W4281293834 cites W3202670818 @default.
- W4281293834 cites W4200356145 @default.
- W4281293834 cites W4210386653 @default.
- W4281293834 cites W4213284098 @default.
- W4281293834 cites W4221035769 @default.
- W4281293834 doi "https://doi.org/10.1016/j.diamond.2022.109131" @default.
- W4281293834 hasPublicationYear "2022" @default.
- W4281293834 type Work @default.
- W4281293834 citedByCount "6" @default.
- W4281293834 countsByYear W42812938342023 @default.
- W4281293834 crossrefType "journal-article" @default.
- W4281293834 hasAuthorship W4281293834A5007415330 @default.
- W4281293834 hasAuthorship W4281293834A5026752395 @default.
- W4281293834 hasAuthorship W4281293834A5033015806 @default.
- W4281293834 hasAuthorship W4281293834A5050530136 @default.
- W4281293834 hasAuthorship W4281293834A5086073352 @default.
- W4281293834 hasAuthorship W4281293834A5087450548 @default.
- W4281293834 hasConcept C104779481 @default.
- W4281293834 hasConcept C121332964 @default.
- W4281293834 hasConcept C127413603 @default.
- W4281293834 hasConcept C129564387 @default.
- W4281293834 hasConcept C13530604 @default.
- W4281293834 hasConcept C159985019 @default.
- W4281293834 hasConcept C171250308 @default.
- W4281293834 hasConcept C183287310 @default.
- W4281293834 hasConcept C192562407 @default.
- W4281293834 hasConcept C204530211 @default.
- W4281293834 hasConcept C2778119658 @default.
- W4281293834 hasConcept C2780012831 @default.
- W4281293834 hasConcept C2780026712 @default.
- W4281293834 hasConcept C30080830 @default.
- W4281293834 hasConcept C42360764 @default.
- W4281293834 hasConcept C58024561 @default.
- W4281293834 hasConcept C59061564 @default.
- W4281293834 hasConcept C68044625 @default.
- W4281293834 hasConcept C97346530 @default.
- W4281293834 hasConcept C97355855 @default.