Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281383054> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4281383054 endingPage "68" @default.
- W4281383054 startingPage "68" @default.
- W4281383054 abstract "A novel method of monitoring the health of dairy cows in large-scale dairy farms is proposed via image-based analysis of cows on rotary-based milking platforms, where deep learning is used to classify the extent of teat-end hyperkeratosis. The videos can be analyzed to segment the teats for feature analysis, which can then be used to assess the risk of infections and other diseases. This analysis can be performed more efficiently by using the key frames of each cow as they pass through the image frame. Extracting key frames from these videos would greatly simplify this analysis, but there are several challenges. First, data collection in the farm setting is harsh, resulting in unpredictable temporal key frame positions; empty, obfuscated, or shifted images of the cow’s teats; frequently empty stalls due to challenges with herding cows into the parlor; and regular interruptions and reversals in the direction of the parlor. Second, supervised learning requires expensive and time-consuming human annotation of key frames, which is impractical in large commercial dairy farms housing thousands of cows. Unsupervised learning methods rely on large frame differences and often suffer low performance. In this paper, we propose a novel unsupervised few-shot learning model which extracts key frames from large (∼21,000 frames) video streams. Using a simple L1 distance metric that combines both image and deep features between each unlabeled frame and a few (32) labeled key frames, a key frame selection mechanism, and a quality check process, key frames can be extracted with sufficient accuracy (F score 63.6%) and timeliness (<10 min per 21,000 frames) for commercial dairy farm setting demands." @default.
- W4281383054 created "2022-05-25" @default.
- W4281383054 creator A5025959709 @default.
- W4281383054 creator A5065835356 @default.
- W4281383054 creator A5079460371 @default.
- W4281383054 date "2022-05-23" @default.
- W4281383054 modified "2023-09-26" @default.
- W4281383054 title "Unsupervised Few Shot Key Frame Extraction for Cow Teat Videos" @default.
- W4281383054 cites W2012535394 @default.
- W4281383054 cites W2045221706 @default.
- W4281383054 cites W2118210476 @default.
- W4281383054 cites W2133665775 @default.
- W4281383054 cites W2150337255 @default.
- W4281383054 cites W2271444084 @default.
- W4281383054 cites W2332102917 @default.
- W4281383054 cites W2617418063 @default.
- W4281383054 cites W2808044221 @default.
- W4281383054 cites W2886735509 @default.
- W4281383054 cites W3010790568 @default.
- W4281383054 cites W3081152612 @default.
- W4281383054 cites W3090254005 @default.
- W4281383054 cites W3092931744 @default.
- W4281383054 cites W3095591473 @default.
- W4281383054 cites W3107543738 @default.
- W4281383054 cites W3131126701 @default.
- W4281383054 cites W3157618766 @default.
- W4281383054 cites W3198212100 @default.
- W4281383054 cites W3209417382 @default.
- W4281383054 cites W4205224819 @default.
- W4281383054 cites W4221040341 @default.
- W4281383054 doi "https://doi.org/10.3390/data7050068" @default.
- W4281383054 hasPublicationYear "2022" @default.
- W4281383054 type Work @default.
- W4281383054 citedByCount "0" @default.
- W4281383054 crossrefType "journal-article" @default.
- W4281383054 hasAuthorship W4281383054A5025959709 @default.
- W4281383054 hasAuthorship W4281383054A5065835356 @default.
- W4281383054 hasAuthorship W4281383054A5079460371 @default.
- W4281383054 hasBestOaLocation W42813830541 @default.
- W4281383054 hasConcept C126042441 @default.
- W4281383054 hasConcept C136389625 @default.
- W4281383054 hasConcept C153180895 @default.
- W4281383054 hasConcept C154945302 @default.
- W4281383054 hasConcept C26517878 @default.
- W4281383054 hasConcept C2780139006 @default.
- W4281383054 hasConcept C31972630 @default.
- W4281383054 hasConcept C38652104 @default.
- W4281383054 hasConcept C41008148 @default.
- W4281383054 hasConcept C50644808 @default.
- W4281383054 hasConcept C76155785 @default.
- W4281383054 hasConceptScore W4281383054C126042441 @default.
- W4281383054 hasConceptScore W4281383054C136389625 @default.
- W4281383054 hasConceptScore W4281383054C153180895 @default.
- W4281383054 hasConceptScore W4281383054C154945302 @default.
- W4281383054 hasConceptScore W4281383054C26517878 @default.
- W4281383054 hasConceptScore W4281383054C2780139006 @default.
- W4281383054 hasConceptScore W4281383054C31972630 @default.
- W4281383054 hasConceptScore W4281383054C38652104 @default.
- W4281383054 hasConceptScore W4281383054C41008148 @default.
- W4281383054 hasConceptScore W4281383054C50644808 @default.
- W4281383054 hasConceptScore W4281383054C76155785 @default.
- W4281383054 hasFunder F4320309624 @default.
- W4281383054 hasIssue "5" @default.
- W4281383054 hasLocation W42813830541 @default.
- W4281383054 hasLocation W42813830542 @default.
- W4281383054 hasOpenAccess W4281383054 @default.
- W4281383054 hasPrimaryLocation W42813830541 @default.
- W4281383054 hasRelatedWork W1614340030 @default.
- W4281383054 hasRelatedWork W2002492624 @default.
- W4281383054 hasRelatedWork W2079303181 @default.
- W4281383054 hasRelatedWork W2347838266 @default.
- W4281383054 hasRelatedWork W2372652133 @default.
- W4281383054 hasRelatedWork W2386640596 @default.
- W4281383054 hasRelatedWork W2394559091 @default.
- W4281383054 hasRelatedWork W2810201907 @default.
- W4281383054 hasRelatedWork W4213373515 @default.
- W4281383054 hasRelatedWork W855007925 @default.
- W4281383054 hasVolume "7" @default.
- W4281383054 isParatext "false" @default.
- W4281383054 isRetracted "false" @default.
- W4281383054 workType "article" @default.