Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281386648> ?p ?o ?g. }
- W4281386648 endingPage "9913" @default.
- W4281386648 startingPage "9900" @default.
- W4281386648 abstract "Considering the characteristics of rolling bearing such as variable working conditions, unbalanced fault sample size, and multiple coupling fault types, it is a great challenge to achieve general accurate fault diagnosis model. In this paper, deep meta-learning and variational autoencoder (DML-VAE) is applied for coupling fault diagnosis of rolling bearing under variable working conditions. The collected vibration signals of rolling bearing are divided into long time series samples, including normal samples, single fault samples, and coupling fault samples. Then, variational autoencoder (VAE) is utilized for data augmentation of time series samples, and the generated samples are brought into one-dimensional deep convolutional neural network (1-DCNN) for further classification of multiple coupling faults. Subsequently, the trained 1-DCNN is regarded as embedding model. Training samples and other working condition samples are defined as support set and query set. Based on metric-based meta-learning method, sample pairs composed of support set and query set are constructed and brought into the embedding model to get the category with shortest metric distance as the classification result. In addition, the embedding model can be optimized by minimizing the contrastive loss among these sample pairs. The case study shows that the DML-VAE can achieve accurate classification results under the coupling of two faults and three faults, and maintain high diagnostic accuracy under variable working conditions. Compared with other models, the proposed model can also get the most accurate fault diagnosis results for all categories under unbalanced samples." @default.
- W4281386648 created "2022-05-25" @default.
- W4281386648 creator A5014150866 @default.
- W4281386648 creator A5049523085 @default.
- W4281386648 creator A5060282134 @default.
- W4281386648 creator A5064373521 @default.
- W4281386648 date "2022-05-24" @default.
- W4281386648 modified "2023-10-02" @default.
- W4281386648 title "Deep meta-learning and variational autoencoder for coupling fault diagnosis of rolling bearing under variable working conditions" @default.
- W4281386648 cites W2007201064 @default.
- W4281386648 cites W243674440 @default.
- W4281386648 cites W2892371073 @default.
- W4281386648 cites W2907007702 @default.
- W4281386648 cites W2947221304 @default.
- W4281386648 cites W2965954913 @default.
- W4281386648 cites W2984855924 @default.
- W4281386648 cites W2999570460 @default.
- W4281386648 cites W3006342871 @default.
- W4281386648 cites W3006550004 @default.
- W4281386648 cites W3012040475 @default.
- W4281386648 cites W3021669159 @default.
- W4281386648 cites W3025981493 @default.
- W4281386648 cites W3026006566 @default.
- W4281386648 cites W3030916833 @default.
- W4281386648 cites W3033377113 @default.
- W4281386648 cites W3037611653 @default.
- W4281386648 cites W3041734766 @default.
- W4281386648 cites W3042633774 @default.
- W4281386648 cites W3043310823 @default.
- W4281386648 cites W3045896959 @default.
- W4281386648 cites W3086653191 @default.
- W4281386648 cites W3094110601 @default.
- W4281386648 cites W3096918578 @default.
- W4281386648 cites W3097430173 @default.
- W4281386648 cites W3100777112 @default.
- W4281386648 cites W3118303912 @default.
- W4281386648 cites W3118876385 @default.
- W4281386648 cites W3120411294 @default.
- W4281386648 cites W3120741450 @default.
- W4281386648 cites W3126446664 @default.
- W4281386648 cites W3127386270 @default.
- W4281386648 cites W3132921282 @default.
- W4281386648 cites W3135077060 @default.
- W4281386648 cites W4214575921 @default.
- W4281386648 doi "https://doi.org/10.1177/09544062221101834" @default.
- W4281386648 hasPublicationYear "2022" @default.
- W4281386648 type Work @default.
- W4281386648 citedByCount "3" @default.
- W4281386648 countsByYear W42813866482023 @default.
- W4281386648 crossrefType "journal-article" @default.
- W4281386648 hasAuthorship W4281386648A5014150866 @default.
- W4281386648 hasAuthorship W4281386648A5049523085 @default.
- W4281386648 hasAuthorship W4281386648A5060282134 @default.
- W4281386648 hasAuthorship W4281386648A5064373521 @default.
- W4281386648 hasConcept C101738243 @default.
- W4281386648 hasConcept C11413529 @default.
- W4281386648 hasConcept C121332964 @default.
- W4281386648 hasConcept C127313418 @default.
- W4281386648 hasConcept C127413603 @default.
- W4281386648 hasConcept C131584629 @default.
- W4281386648 hasConcept C153180895 @default.
- W4281386648 hasConcept C154945302 @default.
- W4281386648 hasConcept C165205528 @default.
- W4281386648 hasConcept C175551986 @default.
- W4281386648 hasConcept C176217482 @default.
- W4281386648 hasConcept C177264268 @default.
- W4281386648 hasConcept C198531522 @default.
- W4281386648 hasConcept C199360897 @default.
- W4281386648 hasConcept C199978012 @default.
- W4281386648 hasConcept C21547014 @default.
- W4281386648 hasConcept C41008148 @default.
- W4281386648 hasConcept C41608201 @default.
- W4281386648 hasConcept C50644808 @default.
- W4281386648 hasConcept C78519656 @default.
- W4281386648 hasConcept C81363708 @default.
- W4281386648 hasConcept C97355855 @default.
- W4281386648 hasConceptScore W4281386648C101738243 @default.
- W4281386648 hasConceptScore W4281386648C11413529 @default.
- W4281386648 hasConceptScore W4281386648C121332964 @default.
- W4281386648 hasConceptScore W4281386648C127313418 @default.
- W4281386648 hasConceptScore W4281386648C127413603 @default.
- W4281386648 hasConceptScore W4281386648C131584629 @default.
- W4281386648 hasConceptScore W4281386648C153180895 @default.
- W4281386648 hasConceptScore W4281386648C154945302 @default.
- W4281386648 hasConceptScore W4281386648C165205528 @default.
- W4281386648 hasConceptScore W4281386648C175551986 @default.
- W4281386648 hasConceptScore W4281386648C176217482 @default.
- W4281386648 hasConceptScore W4281386648C177264268 @default.
- W4281386648 hasConceptScore W4281386648C198531522 @default.
- W4281386648 hasConceptScore W4281386648C199360897 @default.
- W4281386648 hasConceptScore W4281386648C199978012 @default.
- W4281386648 hasConceptScore W4281386648C21547014 @default.
- W4281386648 hasConceptScore W4281386648C41008148 @default.
- W4281386648 hasConceptScore W4281386648C41608201 @default.
- W4281386648 hasConceptScore W4281386648C50644808 @default.
- W4281386648 hasConceptScore W4281386648C78519656 @default.
- W4281386648 hasConceptScore W4281386648C81363708 @default.
- W4281386648 hasConceptScore W4281386648C97355855 @default.