Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281392102> ?p ?o ?g. }
- W4281392102 endingPage "111313" @default.
- W4281392102 startingPage "111313" @default.
- W4281392102 abstract "Constructing surrogate models for uncertainty quantification (UQ) on complex partial differential equations (PDEs) having inherently high-dimensional O(10n), n≥2, stochastic inputs (e.g., forcing terms, boundary conditions, initial conditions) poses tremendous challenges. The “curse of dimensionality” can be addressed with suitable unsupervised learning techniques used as a pre-processing tool to encode inputs onto lower-dimensional subspaces while retaining its structural information and meaningful properties. In this work, we review and investigate thirteen dimension reduction methods including linear and nonlinear, spectral, blind source separation, convex and non-convex methods and utilize the resulting embeddings to construct a mapping to quantities of interest via polynomial chaos expansions (PCE). We refer to the general proposed approach as manifold PCE (m-PCE), where manifold corresponds to the latent space resulting from any of the studied dimension reduction methods. To investigate the capabilities and limitations of these methods we conduct numerical tests for three physics-based systems (treated as black-boxes) having high-dimensional stochastic inputs of varying complexity modeled as both Gaussian and non-Gaussian random fields to investigate the effect of the intrinsic dimensionality of input data. We demonstrate both the advantages and limitations of the unsupervised learning methods and we conclude that a suitable m-PCE model provides a cost-effective approach compared to alternative algorithms proposed in the literature, including recently proposed expensive deep neural network-based surrogates and can be readily applied for high-dimensional UQ in stochastic PDEs." @default.
- W4281392102 created "2022-05-25" @default.
- W4281392102 creator A5013517565 @default.
- W4281392102 creator A5041446747 @default.
- W4281392102 creator A5046890332 @default.
- W4281392102 creator A5075125832 @default.
- W4281392102 creator A5087165824 @default.
- W4281392102 date "2022-09-01" @default.
- W4281392102 modified "2023-10-14" @default.
- W4281392102 title "A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems" @default.
- W4281392102 cites W1576825000 @default.
- W4281392102 cites W1612404967 @default.
- W4281392102 cites W1858056047 @default.
- W4281392102 cites W1902027874 @default.
- W4281392102 cites W1968326286 @default.
- W4281392102 cites W1974388905 @default.
- W4281392102 cites W1982770560 @default.
- W4281392102 cites W1984943006 @default.
- W4281392102 cites W1987326306 @default.
- W4281392102 cites W1995565517 @default.
- W4281392102 cites W2001141328 @default.
- W4281392102 cites W2007572995 @default.
- W4281392102 cites W2009951217 @default.
- W4281392102 cites W2010737928 @default.
- W4281392102 cites W2013912476 @default.
- W4281392102 cites W2014945091 @default.
- W4281392102 cites W2015731569 @default.
- W4281392102 cites W2018159038 @default.
- W4281392102 cites W2019502123 @default.
- W4281392102 cites W2021125631 @default.
- W4281392102 cites W2036224061 @default.
- W4281392102 cites W2045355467 @default.
- W4281392102 cites W2053186076 @default.
- W4281392102 cites W2059745395 @default.
- W4281392102 cites W2060682310 @default.
- W4281392102 cites W2077776048 @default.
- W4281392102 cites W2083415217 @default.
- W4281392102 cites W2083542829 @default.
- W4281392102 cites W2097308346 @default.
- W4281392102 cites W2100495367 @default.
- W4281392102 cites W2103914106 @default.
- W4281392102 cites W2105234758 @default.
- W4281392102 cites W2110632054 @default.
- W4281392102 cites W2111959010 @default.
- W4281392102 cites W2113337191 @default.
- W4281392102 cites W2114508388 @default.
- W4281392102 cites W2123649031 @default.
- W4281392102 cites W2136284614 @default.
- W4281392102 cites W2139923370 @default.
- W4281392102 cites W2141224535 @default.
- W4281392102 cites W2141454789 @default.
- W4281392102 cites W2143668817 @default.
- W4281392102 cites W2144359569 @default.
- W4281392102 cites W2154010977 @default.
- W4281392102 cites W2155161883 @default.
- W4281392102 cites W2156838815 @default.
- W4281392102 cites W2167101736 @default.
- W4281392102 cites W2169528473 @default.
- W4281392102 cites W2192479274 @default.
- W4281392102 cites W2238537209 @default.
- W4281392102 cites W2274168723 @default.
- W4281392102 cites W2280506408 @default.
- W4281392102 cites W2282795067 @default.
- W4281392102 cites W2302211741 @default.
- W4281392102 cites W2529348500 @default.
- W4281392102 cites W2568283272 @default.
- W4281392102 cites W2597578662 @default.
- W4281392102 cites W2605147767 @default.
- W4281392102 cites W2608282032 @default.
- W4281392102 cites W2731103645 @default.
- W4281392102 cites W2742699808 @default.
- W4281392102 cites W2743274700 @default.
- W4281392102 cites W2756659234 @default.
- W4281392102 cites W2774030114 @default.
- W4281392102 cites W2782034465 @default.
- W4281392102 cites W2784141616 @default.
- W4281392102 cites W2784733489 @default.
- W4281392102 cites W2786232134 @default.
- W4281392102 cites W2788938433 @default.
- W4281392102 cites W2794102850 @default.
- W4281392102 cites W2794289187 @default.
- W4281392102 cites W2887205128 @default.
- W4281392102 cites W2890968382 @default.
- W4281392102 cites W2899283552 @default.
- W4281392102 cites W2900369848 @default.
- W4281392102 cites W2908059281 @default.
- W4281392102 cites W2908541468 @default.
- W4281392102 cites W2921426515 @default.
- W4281392102 cites W2946866513 @default.
- W4281392102 cites W2962936676 @default.
- W4281392102 cites W2963025476 @default.
- W4281392102 cites W2988968426 @default.
- W4281392102 cites W2989152504 @default.
- W4281392102 cites W3000409346 @default.
- W4281392102 cites W3002223934 @default.
- W4281392102 cites W3004571839 @default.
- W4281392102 cites W3009649509 @default.
- W4281392102 cites W3013716343 @default.