Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281393096> ?p ?o ?g. }
- W4281393096 endingPage "108999" @default.
- W4281393096 startingPage "108999" @default.
- W4281393096 abstract "Accurate and timely mapping of wildfire burned areas is crucial for post-fire management, planning, and next subsequent actions. The monitoring and mapping of the burned area by traditional and common methods are time-consuming and challenging while is vital to propose an advanced burned area detection framework for achieving reliable results. To this end, this study proposed a novel End-to-End framework based on deep learning and post-fire Sentinel-2 imagery. The proposed framework known as Burnt-Net combines quadratic morphological operators and standard convolution layers. The multi-patch multi-level residual morphological (MP-MRM) blocks are the main part of the decoder part of the Burnt-Net while the encoder part uses the multi-level residual morphological and transpose convolution layers. To evaluate the efficiency of Burnt-Net the post-fire Sentinel-2 for the latest wildfires over different countries was collected and then, the model was trained and evaluated based on them. Furthermore, the most common deep learning-based model implemented for comparing the result of burned areas by the proposed Burnt-Net. The results of burned areas mapping show the Burnt-Net is robust in the detection of burned areas and provides a mean accuracy of more than 97% by overall accuracy (OA). Furthermore, the Burnt-Net is fast and can provide the burned area map in the near real-time." @default.
- W4281393096 created "2022-05-25" @default.
- W4281393096 creator A5003591539 @default.
- W4281393096 creator A5018156889 @default.
- W4281393096 creator A5035508615 @default.
- W4281393096 date "2022-07-01" @default.
- W4281393096 modified "2023-09-26" @default.
- W4281393096 title "Burnt-Net: Wildfire burned area mapping with single post-fire Sentinel-2 data and deep learning morphological neural network" @default.
- W4281393096 cites W2301756981 @default.
- W4281393096 cites W2314964624 @default.
- W4281393096 cites W2521472256 @default.
- W4281393096 cites W2561293640 @default.
- W4281393096 cites W2758738932 @default.
- W4281393096 cites W2940756181 @default.
- W4281393096 cites W2958038879 @default.
- W4281393096 cites W2981309558 @default.
- W4281393096 cites W2988256640 @default.
- W4281393096 cites W2998342770 @default.
- W4281393096 cites W2999453397 @default.
- W4281393096 cites W3001283548 @default.
- W4281393096 cites W3003452346 @default.
- W4281393096 cites W3008427521 @default.
- W4281393096 cites W3014641072 @default.
- W4281393096 cites W3019451942 @default.
- W4281393096 cites W3023351371 @default.
- W4281393096 cites W3028628556 @default.
- W4281393096 cites W3037074658 @default.
- W4281393096 cites W3045606376 @default.
- W4281393096 cites W3091015953 @default.
- W4281393096 cites W3092132515 @default.
- W4281393096 cites W3092134957 @default.
- W4281393096 cites W3092365004 @default.
- W4281393096 cites W3094476141 @default.
- W4281393096 cites W3111050907 @default.
- W4281393096 cites W3111622151 @default.
- W4281393096 cites W3112860280 @default.
- W4281393096 cites W3118513496 @default.
- W4281393096 cites W3119886183 @default.
- W4281393096 cites W3122028341 @default.
- W4281393096 cites W3123329766 @default.
- W4281393096 cites W3123813572 @default.
- W4281393096 cites W3125134914 @default.
- W4281393096 cites W3135366015 @default.
- W4281393096 cites W3141947287 @default.
- W4281393096 cites W3154452795 @default.
- W4281393096 cites W3155150792 @default.
- W4281393096 cites W3157997500 @default.
- W4281393096 cites W3158759741 @default.
- W4281393096 cites W3158850270 @default.
- W4281393096 cites W3163612517 @default.
- W4281393096 cites W3167109952 @default.
- W4281393096 cites W3175322496 @default.
- W4281393096 cites W3175620040 @default.
- W4281393096 cites W3177272898 @default.
- W4281393096 cites W3178478114 @default.
- W4281393096 cites W3183407731 @default.
- W4281393096 cites W3185118158 @default.
- W4281393096 cites W3192524834 @default.
- W4281393096 cites W3195979568 @default.
- W4281393096 cites W3196086373 @default.
- W4281393096 cites W3199090500 @default.
- W4281393096 cites W3209711272 @default.
- W4281393096 cites W3215064512 @default.
- W4281393096 cites W3215876020 @default.
- W4281393096 cites W3217044310 @default.
- W4281393096 cites W4200098166 @default.
- W4281393096 cites W4200503100 @default.
- W4281393096 cites W4200519212 @default.
- W4281393096 cites W4200605141 @default.
- W4281393096 cites W4200616910 @default.
- W4281393096 cites W4230847687 @default.
- W4281393096 doi "https://doi.org/10.1016/j.ecolind.2022.108999" @default.
- W4281393096 hasPublicationYear "2022" @default.
- W4281393096 type Work @default.
- W4281393096 citedByCount "14" @default.
- W4281393096 countsByYear W42813930962022 @default.
- W4281393096 countsByYear W42813930962023 @default.
- W4281393096 crossrefType "journal-article" @default.
- W4281393096 hasAuthorship W4281393096A5003591539 @default.
- W4281393096 hasAuthorship W4281393096A5018156889 @default.
- W4281393096 hasAuthorship W4281393096A5035508615 @default.
- W4281393096 hasBestOaLocation W42813930961 @default.
- W4281393096 hasConcept C108583219 @default.
- W4281393096 hasConcept C11413529 @default.
- W4281393096 hasConcept C154945302 @default.
- W4281393096 hasConcept C155512373 @default.
- W4281393096 hasConcept C205649164 @default.
- W4281393096 hasConcept C39432304 @default.
- W4281393096 hasConcept C41008148 @default.
- W4281393096 hasConcept C58640448 @default.
- W4281393096 hasConcept C62649853 @default.
- W4281393096 hasConceptScore W4281393096C108583219 @default.
- W4281393096 hasConceptScore W4281393096C11413529 @default.
- W4281393096 hasConceptScore W4281393096C154945302 @default.
- W4281393096 hasConceptScore W4281393096C155512373 @default.
- W4281393096 hasConceptScore W4281393096C205649164 @default.
- W4281393096 hasConceptScore W4281393096C39432304 @default.
- W4281393096 hasConceptScore W4281393096C41008148 @default.