Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281477005> ?p ?o ?g. }
- W4281477005 endingPage "5336" @default.
- W4281477005 startingPage "5336" @default.
- W4281477005 abstract "In this paper, we provide a comprehensive survey of the recent advances in abnormality detection in smart grids using multimodal image data, which include visible light, infrared, and optical satellite images. The applications in visible light and infrared images, enabling abnormality detection at short range, further include several typical applications in intelligent sensors deployed in smart grids, while optical satellite image data focus on abnormality detection from a large distance. Moreover, the literature in each aspect is organized according to the considered techniques. In addition, several key methodologies and conditions for applying these techniques to abnormality detection are identified to help determine whether to use deep learning and which kind of learning techniques to use. Traditional approaches are also summarized together with their performance comparison with deep-learning-based approaches, based on which the necessity, seen in the surveyed literature, of adopting image-data-based abnormality detection is clarified. Overall, this comprehensive survey categorizes and carefully summarizes insights from representative papers in this field, which will widely benefit practitioners and academic researchers." @default.
- W4281477005 created "2022-05-26" @default.
- W4281477005 creator A5006799343 @default.
- W4281477005 creator A5021661339 @default.
- W4281477005 creator A5029760958 @default.
- W4281477005 creator A5041988024 @default.
- W4281477005 creator A5046990686 @default.
- W4281477005 creator A5049033557 @default.
- W4281477005 creator A5066014874 @default.
- W4281477005 creator A5079594267 @default.
- W4281477005 creator A5080222187 @default.
- W4281477005 date "2022-05-25" @default.
- W4281477005 modified "2023-10-18" @default.
- W4281477005 title "A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data" @default.
- W4281477005 cites W1561708537 @default.
- W4281477005 cites W1978459068 @default.
- W4281477005 cites W1997081029 @default.
- W4281477005 cites W1998469123 @default.
- W4281477005 cites W2005005575 @default.
- W4281477005 cites W2014207207 @default.
- W4281477005 cites W2020620047 @default.
- W4281477005 cites W2027069555 @default.
- W4281477005 cites W2037123093 @default.
- W4281477005 cites W2059732136 @default.
- W4281477005 cites W2066135581 @default.
- W4281477005 cites W2076450364 @default.
- W4281477005 cites W2090033215 @default.
- W4281477005 cites W2091413995 @default.
- W4281477005 cites W2122646361 @default.
- W4281477005 cites W2125851157 @default.
- W4281477005 cites W2130763462 @default.
- W4281477005 cites W2137426486 @default.
- W4281477005 cites W2141012705 @default.
- W4281477005 cites W2156958736 @default.
- W4281477005 cites W2171359803 @default.
- W4281477005 cites W2278186031 @default.
- W4281477005 cites W2346196128 @default.
- W4281477005 cites W2461010048 @default.
- W4281477005 cites W2613480438 @default.
- W4281477005 cites W2618530766 @default.
- W4281477005 cites W2626278768 @default.
- W4281477005 cites W2738818265 @default.
- W4281477005 cites W2769112283 @default.
- W4281477005 cites W2774320778 @default.
- W4281477005 cites W2783554631 @default.
- W4281477005 cites W2783876128 @default.
- W4281477005 cites W2795582109 @default.
- W4281477005 cites W2810550035 @default.
- W4281477005 cites W2887555757 @default.
- W4281477005 cites W2895235883 @default.
- W4281477005 cites W2895462801 @default.
- W4281477005 cites W2897772777 @default.
- W4281477005 cites W2901982721 @default.
- W4281477005 cites W2912753047 @default.
- W4281477005 cites W2914255620 @default.
- W4281477005 cites W2921878249 @default.
- W4281477005 cites W2945762099 @default.
- W4281477005 cites W2953588203 @default.
- W4281477005 cites W2954996726 @default.
- W4281477005 cites W2958341116 @default.
- W4281477005 cites W2963029069 @default.
- W4281477005 cites W2965780602 @default.
- W4281477005 cites W2969592804 @default.
- W4281477005 cites W2970017308 @default.
- W4281477005 cites W2972350118 @default.
- W4281477005 cites W2975293816 @default.
- W4281477005 cites W3004207920 @default.
- W4281477005 cites W3014235264 @default.
- W4281477005 cites W3036598342 @default.
- W4281477005 cites W3069366421 @default.
- W4281477005 cites W3072608590 @default.
- W4281477005 cites W3081817842 @default.
- W4281477005 cites W3088523737 @default.
- W4281477005 cites W3088889804 @default.
- W4281477005 cites W3089294463 @default.
- W4281477005 cites W3095711016 @default.
- W4281477005 cites W3111626948 @default.
- W4281477005 cites W3113975459 @default.
- W4281477005 cites W3114783295 @default.
- W4281477005 cites W3115717021 @default.
- W4281477005 cites W3123104306 @default.
- W4281477005 cites W3127033546 @default.
- W4281477005 cites W3129639326 @default.
- W4281477005 cites W3135586723 @default.
- W4281477005 cites W3138529858 @default.
- W4281477005 cites W3145585884 @default.
- W4281477005 cites W3154257404 @default.
- W4281477005 cites W3174952881 @default.
- W4281477005 cites W3193878513 @default.
- W4281477005 cites W3195905065 @default.
- W4281477005 cites W3199905074 @default.
- W4281477005 cites W4226418291 @default.
- W4281477005 doi "https://doi.org/10.3390/app12115336" @default.
- W4281477005 hasPublicationYear "2022" @default.
- W4281477005 type Work @default.
- W4281477005 citedByCount "4" @default.
- W4281477005 countsByYear W42814770052023 @default.
- W4281477005 crossrefType "journal-article" @default.