Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281479961> ?p ?o ?g. }
- W4281479961 endingPage "316" @default.
- W4281479961 startingPage "295" @default.
- W4281479961 abstract "Extracting cause-effect entities from medical literature is an important task in medical information retrieval. A solution for solving this task can be used for compilation of various causality relations, such as causality between disease and symptoms, between medications and side effects, and between genes and diseases. Existing solutions for extracting cause-effect entities work well for sentences where the cause and the effect phrases are name entities, single-word nouns, or noun phrases consisting of two to three words. Unfortunately, in medical literature, cause and effect phrases in a sentence are not simply nouns or noun phrases, rather they are complex phrases consisting of several words, and existing methods fail to correctly extract the cause and effect entities in such sentences. Partial extraction of cause and effect entities conveys poor quality, non-informative, and often, contradictory facts, comparing to the one intended in the given sentence. In this work, we solve this problem by designing an unsupervised method for cause and effect phrase extraction, PatternCausality, which is specifically suitable for the medical literature. Our proposed approach first uses a collection of cause-effect dependency patterns as template to extract head words of cause and effect phrases and then it uses a novel phrase extraction method to obtain complete and meaningful cause and effect phrases from a sentence. Experiments on a cause-effect dataset built from sentences from PubMed articles show that for extracting cause and effect entities, PatternCausality is substantially better than the existing methods-with an order of magnitude improvement in the F-score metric over the best of the existing methods. We also build different variants of PatternCausality, which use different phrase extraction methods; all variants are better than the existing methods. PatternCausality and its variants also show modest performance improvement over the existing methods for extracting cause and effect entities in a domain-neutral benchmark dataset, in which cause and effect entities are nouns or noun phrases consisting of one to two words." @default.
- W4281479961 created "2022-05-26" @default.
- W4281479961 creator A5035041540 @default.
- W4281479961 creator A5038978057 @default.
- W4281479961 creator A5044451399 @default.
- W4281479961 creator A5077889225 @default.
- W4281479961 date "2022-05-25" @default.
- W4281479961 modified "2023-10-14" @default.
- W4281479961 title "Informative Causality Extraction from Medical Literature via Dependency-Tree–Based Patterns" @default.
- W4281479961 cites W1991145427 @default.
- W4281479961 cites W1995931698 @default.
- W4281479961 cites W2045615482 @default.
- W4281479961 cites W2060240021 @default.
- W4281479961 cites W2094061585 @default.
- W4281479961 cites W2099404336 @default.
- W4281479961 cites W2099779943 @default.
- W4281479961 cites W2106349067 @default.
- W4281479961 cites W2129767020 @default.
- W4281479961 cites W2152358231 @default.
- W4281479961 cites W2153105942 @default.
- W4281479961 cites W2155033804 @default.
- W4281479961 cites W2161740415 @default.
- W4281479961 cites W2251622960 @default.
- W4281479961 cites W2543719410 @default.
- W4281479961 cites W2566811487 @default.
- W4281479961 cites W2616363959 @default.
- W4281479961 cites W2888296742 @default.
- W4281479961 cites W2889363461 @default.
- W4281479961 cites W2963020213 @default.
- W4281479961 cites W2991168777 @default.
- W4281479961 cites W3007799423 @default.
- W4281479961 cites W3048539230 @default.
- W4281479961 doi "https://doi.org/10.1007/s41666-022-00116-z" @default.
- W4281479961 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35637864" @default.
- W4281479961 hasPublicationYear "2022" @default.
- W4281479961 type Work @default.
- W4281479961 citedByCount "2" @default.
- W4281479961 countsByYear W42814799612023 @default.
- W4281479961 crossrefType "journal-article" @default.
- W4281479961 hasAuthorship W4281479961A5035041540 @default.
- W4281479961 hasAuthorship W4281479961A5038978057 @default.
- W4281479961 hasAuthorship W4281479961A5044451399 @default.
- W4281479961 hasAuthorship W4281479961A5077889225 @default.
- W4281479961 hasBestOaLocation W42814799611 @default.
- W4281479961 hasConcept C113174947 @default.
- W4281479961 hasConcept C121332964 @default.
- W4281479961 hasConcept C121934690 @default.
- W4281479961 hasConcept C134306372 @default.
- W4281479961 hasConcept C153962237 @default.
- W4281479961 hasConcept C154945302 @default.
- W4281479961 hasConcept C162324750 @default.
- W4281479961 hasConcept C187736073 @default.
- W4281479961 hasConcept C19768560 @default.
- W4281479961 hasConcept C204321447 @default.
- W4281479961 hasConcept C2776224158 @default.
- W4281479961 hasConcept C2777530160 @default.
- W4281479961 hasConcept C2780451532 @default.
- W4281479961 hasConcept C33923547 @default.
- W4281479961 hasConcept C41008148 @default.
- W4281479961 hasConcept C41417386 @default.
- W4281479961 hasConcept C62520636 @default.
- W4281479961 hasConcept C64357122 @default.
- W4281479961 hasConceptScore W4281479961C113174947 @default.
- W4281479961 hasConceptScore W4281479961C121332964 @default.
- W4281479961 hasConceptScore W4281479961C121934690 @default.
- W4281479961 hasConceptScore W4281479961C134306372 @default.
- W4281479961 hasConceptScore W4281479961C153962237 @default.
- W4281479961 hasConceptScore W4281479961C154945302 @default.
- W4281479961 hasConceptScore W4281479961C162324750 @default.
- W4281479961 hasConceptScore W4281479961C187736073 @default.
- W4281479961 hasConceptScore W4281479961C19768560 @default.
- W4281479961 hasConceptScore W4281479961C204321447 @default.
- W4281479961 hasConceptScore W4281479961C2776224158 @default.
- W4281479961 hasConceptScore W4281479961C2777530160 @default.
- W4281479961 hasConceptScore W4281479961C2780451532 @default.
- W4281479961 hasConceptScore W4281479961C33923547 @default.
- W4281479961 hasConceptScore W4281479961C41008148 @default.
- W4281479961 hasConceptScore W4281479961C41417386 @default.
- W4281479961 hasConceptScore W4281479961C62520636 @default.
- W4281479961 hasConceptScore W4281479961C64357122 @default.
- W4281479961 hasIssue "3" @default.
- W4281479961 hasLocation W42814799611 @default.
- W4281479961 hasLocation W42814799612 @default.
- W4281479961 hasLocation W42814799613 @default.
- W4281479961 hasLocation W42814799614 @default.
- W4281479961 hasOpenAccess W4281479961 @default.
- W4281479961 hasPrimaryLocation W42814799611 @default.
- W4281479961 hasRelatedWork W113957139 @default.
- W4281479961 hasRelatedWork W1981764403 @default.
- W4281479961 hasRelatedWork W2076909162 @default.
- W4281479961 hasRelatedWork W2078547541 @default.
- W4281479961 hasRelatedWork W2615566965 @default.
- W4281479961 hasRelatedWork W2806411944 @default.
- W4281479961 hasRelatedWork W3120973983 @default.
- W4281479961 hasRelatedWork W3162178451 @default.
- W4281479961 hasRelatedWork W4221151867 @default.
- W4281479961 hasRelatedWork W4226189154 @default.
- W4281479961 hasVolume "6" @default.