Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281480577> ?p ?o ?g. }
- W4281480577 endingPage "126737" @default.
- W4281480577 startingPage "126737" @default.
- W4281480577 abstract "In this work, we demonstrate a machine learning approach, Random Forest, for the β-Ga2O3 growth rate prediction in the metal–organic vapor phase epitaxy (MOVPE) by analyzing the growth process of β-Ga2O3 on sapphire optically. The proposed model can assess the complex non-linear dependencies among the growth parameters and optimize them for the optimal growth rate. The model based on the process parameters (e.g., precursor concentration, chamber pressure, and push gas) provides high predictive power, reaching the coefficient of determination (R2) of 0.95 and 0.92 for the training and testing sets. The outcome of the model is applicable to both homoepitaxial and heteroepitaxial processes and on different substrate orientations." @default.
- W4281480577 created "2022-05-26" @default.
- W4281480577 creator A5005277795 @default.
- W4281480577 creator A5031254909 @default.
- W4281480577 creator A5032380139 @default.
- W4281480577 creator A5042128137 @default.
- W4281480577 creator A5045970379 @default.
- W4281480577 creator A5055829420 @default.
- W4281480577 creator A5058343657 @default.
- W4281480577 creator A5059253735 @default.
- W4281480577 creator A5066696423 @default.
- W4281480577 date "2022-08-01" @default.
- W4281480577 modified "2023-10-15" @default.
- W4281480577 title "Machine learning supported analysis of MOVPE grown β-Ga2O3 thin films on sapphire" @default.
- W4281480577 cites W1537057828 @default.
- W4281480577 cites W1797580880 @default.
- W4281480577 cites W1969186091 @default.
- W4281480577 cites W1971687145 @default.
- W4281480577 cites W1971981709 @default.
- W4281480577 cites W1975621399 @default.
- W4281480577 cites W1976100621 @default.
- W4281480577 cites W2020431932 @default.
- W4281480577 cites W2030709617 @default.
- W4281480577 cites W2052667143 @default.
- W4281480577 cites W2069020768 @default.
- W4281480577 cites W2071906365 @default.
- W4281480577 cites W2074536946 @default.
- W4281480577 cites W2074927273 @default.
- W4281480577 cites W2077562320 @default.
- W4281480577 cites W2107736647 @default.
- W4281480577 cites W2119088446 @default.
- W4281480577 cites W2148914092 @default.
- W4281480577 cites W2237538873 @default.
- W4281480577 cites W2283793661 @default.
- W4281480577 cites W2461002564 @default.
- W4281480577 cites W2534652803 @default.
- W4281480577 cites W2566646254 @default.
- W4281480577 cites W2613767348 @default.
- W4281480577 cites W2621203217 @default.
- W4281480577 cites W2752594618 @default.
- W4281480577 cites W2891624372 @default.
- W4281480577 cites W2904491642 @default.
- W4281480577 cites W2904899350 @default.
- W4281480577 cites W2910957220 @default.
- W4281480577 cites W2911964244 @default.
- W4281480577 cites W2948704225 @default.
- W4281480577 cites W2961418093 @default.
- W4281480577 cites W2977107982 @default.
- W4281480577 cites W2981313909 @default.
- W4281480577 cites W3022843062 @default.
- W4281480577 cites W3046337657 @default.
- W4281480577 cites W3099833507 @default.
- W4281480577 cites W3104174523 @default.
- W4281480577 cites W3206330763 @default.
- W4281480577 cites W3217002350 @default.
- W4281480577 cites W3217039319 @default.
- W4281480577 cites W4200415611 @default.
- W4281480577 cites W4212843729 @default.
- W4281480577 doi "https://doi.org/10.1016/j.jcrysgro.2022.126737" @default.
- W4281480577 hasPublicationYear "2022" @default.
- W4281480577 type Work @default.
- W4281480577 citedByCount "4" @default.
- W4281480577 countsByYear W42814805772022 @default.
- W4281480577 countsByYear W42814805772023 @default.
- W4281480577 crossrefType "journal-article" @default.
- W4281480577 hasAuthorship W4281480577A5005277795 @default.
- W4281480577 hasAuthorship W4281480577A5031254909 @default.
- W4281480577 hasAuthorship W4281480577A5032380139 @default.
- W4281480577 hasAuthorship W4281480577A5042128137 @default.
- W4281480577 hasAuthorship W4281480577A5045970379 @default.
- W4281480577 hasAuthorship W4281480577A5055829420 @default.
- W4281480577 hasAuthorship W4281480577A5058343657 @default.
- W4281480577 hasAuthorship W4281480577A5059253735 @default.
- W4281480577 hasAuthorship W4281480577A5066696423 @default.
- W4281480577 hasConcept C110738630 @default.
- W4281480577 hasConcept C111368507 @default.
- W4281480577 hasConcept C111919701 @default.
- W4281480577 hasConcept C120665830 @default.
- W4281480577 hasConcept C121332964 @default.
- W4281480577 hasConcept C127313418 @default.
- W4281480577 hasConcept C171250308 @default.
- W4281480577 hasConcept C175665537 @default.
- W4281480577 hasConcept C185592680 @default.
- W4281480577 hasConcept C18762648 @default.
- W4281480577 hasConcept C19067145 @default.
- W4281480577 hasConcept C192562407 @default.
- W4281480577 hasConcept C199289684 @default.
- W4281480577 hasConcept C2524010 @default.
- W4281480577 hasConcept C2777289219 @default.
- W4281480577 hasConcept C2778312390 @default.
- W4281480577 hasConcept C2779227376 @default.
- W4281480577 hasConcept C2780064504 @default.
- W4281480577 hasConcept C33923547 @default.
- W4281480577 hasConcept C41008148 @default.
- W4281480577 hasConcept C49040817 @default.
- W4281480577 hasConcept C520434653 @default.
- W4281480577 hasConcept C97355855 @default.
- W4281480577 hasConcept C98045186 @default.