Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281483362> ?p ?o ?g. }
- W4281483362 endingPage "1668" @default.
- W4281483362 startingPage "1668" @default.
- W4281483362 abstract "Detailed spatial distribution of soil organic matter (SOM) in arable land is essential for agricultural management and decision making. Based on digital soil mapping (DSM) theory, much attention has been focused on the selection of environmental covariates. However, the importance of human activity factors in SOM prediction has not received enough attention, especially in arable soil. Moreover, due to the insufficient amount of soil sampling data used to train and validate the DSM model, the prediction results may be questionable, and some even contradictory. This paper explores the effectiveness of the human footprint, amount of fertilizer application, agronomic management level, crop planting type, and irrigation guarantee degree in SOM mapping of arable land in Heilongjiang Province. The results show that the model only including environmental covariates accounts for 41% of the variation in SOM distribution. The model combining the five human activity factors increases the SOM spatial prediction by 39% in terms of R2 (coefficient of determination), 12% in terms of RMSE (root mean square error), 15% in terms of MAE (mean absolute error), and 11% in terms of LCCC (Lin’s concordance correlation coefficient), showing better prediction accuracy and performance. This indicates that human activity factors play a crucial role in determining SOM distribution in arable land. In the SOM prediction, soil moisture is the most important environmental covariate, and the amount of fertilizer application with a relative importance of 11.36% (ranking 3rd) is the most important human activity factor, higher than the annual average precipitation and elevation. From a spatial point of view, the Sanjiang Plain is a difficult area for prediction." @default.
- W4281483362 created "2022-05-26" @default.
- W4281483362 creator A5003296416 @default.
- W4281483362 creator A5015987586 @default.
- W4281483362 creator A5031780513 @default.
- W4281483362 creator A5066599847 @default.
- W4281483362 creator A5069056378 @default.
- W4281483362 creator A5077242423 @default.
- W4281483362 creator A5078972553 @default.
- W4281483362 date "2022-05-23" @default.
- W4281483362 modified "2023-10-18" @default.
- W4281483362 title "Improving the Prediction of Soil Organic Matter in Arable Land Using Human Activity Factors" @default.
- W4281483362 cites W1471436312 @default.
- W4281483362 cites W1964040105 @default.
- W4281483362 cites W1964338381 @default.
- W4281483362 cites W1971042470 @default.
- W4281483362 cites W1971392798 @default.
- W4281483362 cites W1973714598 @default.
- W4281483362 cites W1984365053 @default.
- W4281483362 cites W1985839444 @default.
- W4281483362 cites W1999610905 @default.
- W4281483362 cites W2000804079 @default.
- W4281483362 cites W2008339952 @default.
- W4281483362 cites W2019894796 @default.
- W4281483362 cites W2019903198 @default.
- W4281483362 cites W2024340952 @default.
- W4281483362 cites W2026961403 @default.
- W4281483362 cites W2028978470 @default.
- W4281483362 cites W2029429198 @default.
- W4281483362 cites W2033404926 @default.
- W4281483362 cites W2033452483 @default.
- W4281483362 cites W2035945445 @default.
- W4281483362 cites W2054325787 @default.
- W4281483362 cites W2063806604 @default.
- W4281483362 cites W2066722804 @default.
- W4281483362 cites W2070442241 @default.
- W4281483362 cites W2071263221 @default.
- W4281483362 cites W2081340599 @default.
- W4281483362 cites W2082057957 @default.
- W4281483362 cites W2083857556 @default.
- W4281483362 cites W2088120487 @default.
- W4281483362 cites W2092299317 @default.
- W4281483362 cites W2096567797 @default.
- W4281483362 cites W2096840876 @default.
- W4281483362 cites W2109025593 @default.
- W4281483362 cites W2109503707 @default.
- W4281483362 cites W2113918746 @default.
- W4281483362 cites W2132739442 @default.
- W4281483362 cites W2136009149 @default.
- W4281483362 cites W2140389576 @default.
- W4281483362 cites W2141717401 @default.
- W4281483362 cites W2144189317 @default.
- W4281483362 cites W2156385758 @default.
- W4281483362 cites W2159758382 @default.
- W4281483362 cites W2161436803 @default.
- W4281483362 cites W2165686389 @default.
- W4281483362 cites W2165948189 @default.
- W4281483362 cites W2196593491 @default.
- W4281483362 cites W2199578048 @default.
- W4281483362 cites W2241762586 @default.
- W4281483362 cites W2261400749 @default.
- W4281483362 cites W2290606251 @default.
- W4281483362 cites W2312406722 @default.
- W4281483362 cites W2339547151 @default.
- W4281483362 cites W2374958732 @default.
- W4281483362 cites W2403405104 @default.
- W4281483362 cites W2472373273 @default.
- W4281483362 cites W2508921413 @default.
- W4281483362 cites W2511706112 @default.
- W4281483362 cites W2512926288 @default.
- W4281483362 cites W2560167313 @default.
- W4281483362 cites W2582794771 @default.
- W4281483362 cites W2587070874 @default.
- W4281483362 cites W2588003345 @default.
- W4281483362 cites W2594368475 @default.
- W4281483362 cites W2612804409 @default.
- W4281483362 cites W2620871096 @default.
- W4281483362 cites W2625696751 @default.
- W4281483362 cites W2653815135 @default.
- W4281483362 cites W2741922227 @default.
- W4281483362 cites W2756443134 @default.
- W4281483362 cites W2762539241 @default.
- W4281483362 cites W2781248407 @default.
- W4281483362 cites W2782582361 @default.
- W4281483362 cites W2784327149 @default.
- W4281483362 cites W2792773398 @default.
- W4281483362 cites W2801285503 @default.
- W4281483362 cites W2811051814 @default.
- W4281483362 cites W2883893555 @default.
- W4281483362 cites W2885575998 @default.
- W4281483362 cites W2885745521 @default.
- W4281483362 cites W2885835777 @default.
- W4281483362 cites W2905650967 @default.
- W4281483362 cites W2908549757 @default.
- W4281483362 cites W2909736607 @default.
- W4281483362 cites W2909926831 @default.
- W4281483362 cites W2911964244 @default.
- W4281483362 cites W2914510449 @default.