Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281492516> ?p ?o ?g. }
- W4281492516 endingPage "12" @default.
- W4281492516 startingPage "1" @default.
- W4281492516 abstract "In order to overcome the influence of background, lighting, deformation, and other factors, using a constitutional neural network structure combined with metric learning, specifically, it includes two model structures, Siamese, and Triplet. The use of bicubic NURBS surfaces is proposed, the idea of constructing mannequins and garment pieces, the experimental results show that NURBS surface control is flexible and simple, and the calculation is stable, and it is the best surface for constructing virtual samples and avatars. Based on studying the three-dimensional structure design of clothing, based on the 10 key curves of the human body, the curve and surface interpolation algorithm is applied, by calling OpenGL related functions, the establishment of the benchmark human body model is well realized, and it lays a foundation for the deformation of the human body model based on parameters in the future." @default.
- W4281492516 created "2022-05-26" @default.
- W4281492516 creator A5037617440 @default.
- W4281492516 creator A5053807619 @default.
- W4281492516 date "2022-05-24" @default.
- W4281492516 modified "2023-09-30" @default.
- W4281492516 title "Application of Convolutional Neural Network Algorithm under Deep Learning in Digital Clothing Design" @default.
- W4281492516 cites W2618353736 @default.
- W4281492516 cites W2725719541 @default.
- W4281492516 cites W2882993259 @default.
- W4281492516 cites W2883142087 @default.
- W4281492516 cites W2896228796 @default.
- W4281492516 cites W2906386705 @default.
- W4281492516 cites W2943322093 @default.
- W4281492516 cites W2944352397 @default.
- W4281492516 cites W2952173934 @default.
- W4281492516 cites W2954760735 @default.
- W4281492516 cites W2954910491 @default.
- W4281492516 cites W2964921444 @default.
- W4281492516 cites W2965153464 @default.
- W4281492516 cites W2988607083 @default.
- W4281492516 cites W3046390173 @default.
- W4281492516 cites W3117768529 @default.
- W4281492516 cites W3164527999 @default.
- W4281492516 cites W3175006004 @default.
- W4281492516 cites W3179303890 @default.
- W4281492516 cites W3199096328 @default.
- W4281492516 cites W3213155031 @default.
- W4281492516 cites W4206469701 @default.
- W4281492516 doi "https://doi.org/10.1155/2022/4880555" @default.
- W4281492516 hasPublicationYear "2022" @default.
- W4281492516 type Work @default.
- W4281492516 citedByCount "2" @default.
- W4281492516 countsByYear W42814925162022 @default.
- W4281492516 countsByYear W42814925162023 @default.
- W4281492516 crossrefType "journal-article" @default.
- W4281492516 hasAuthorship W4281492516A5037617440 @default.
- W4281492516 hasAuthorship W4281492516A5053807619 @default.
- W4281492516 hasBestOaLocation W42814925161 @default.
- W4281492516 hasConcept C108583219 @default.
- W4281492516 hasConcept C111472728 @default.
- W4281492516 hasConcept C11413529 @default.
- W4281492516 hasConcept C121684516 @default.
- W4281492516 hasConcept C13280743 @default.
- W4281492516 hasConcept C137800194 @default.
- W4281492516 hasConcept C138885662 @default.
- W4281492516 hasConcept C154945302 @default.
- W4281492516 hasConcept C162324750 @default.
- W4281492516 hasConcept C166957645 @default.
- W4281492516 hasConcept C176217482 @default.
- W4281492516 hasConcept C185798385 @default.
- W4281492516 hasConcept C205649164 @default.
- W4281492516 hasConcept C21547014 @default.
- W4281492516 hasConcept C2524010 @default.
- W4281492516 hasConcept C2776799497 @default.
- W4281492516 hasConcept C2778305236 @default.
- W4281492516 hasConcept C2780586882 @default.
- W4281492516 hasConcept C33923547 @default.
- W4281492516 hasConcept C36464697 @default.
- W4281492516 hasConcept C41008148 @default.
- W4281492516 hasConcept C502989409 @default.
- W4281492516 hasConcept C50644808 @default.
- W4281492516 hasConcept C530175646 @default.
- W4281492516 hasConcept C81363708 @default.
- W4281492516 hasConcept C95457728 @default.
- W4281492516 hasConceptScore W4281492516C108583219 @default.
- W4281492516 hasConceptScore W4281492516C111472728 @default.
- W4281492516 hasConceptScore W4281492516C11413529 @default.
- W4281492516 hasConceptScore W4281492516C121684516 @default.
- W4281492516 hasConceptScore W4281492516C13280743 @default.
- W4281492516 hasConceptScore W4281492516C137800194 @default.
- W4281492516 hasConceptScore W4281492516C138885662 @default.
- W4281492516 hasConceptScore W4281492516C154945302 @default.
- W4281492516 hasConceptScore W4281492516C162324750 @default.
- W4281492516 hasConceptScore W4281492516C166957645 @default.
- W4281492516 hasConceptScore W4281492516C176217482 @default.
- W4281492516 hasConceptScore W4281492516C185798385 @default.
- W4281492516 hasConceptScore W4281492516C205649164 @default.
- W4281492516 hasConceptScore W4281492516C21547014 @default.
- W4281492516 hasConceptScore W4281492516C2524010 @default.
- W4281492516 hasConceptScore W4281492516C2776799497 @default.
- W4281492516 hasConceptScore W4281492516C2778305236 @default.
- W4281492516 hasConceptScore W4281492516C2780586882 @default.
- W4281492516 hasConceptScore W4281492516C33923547 @default.
- W4281492516 hasConceptScore W4281492516C36464697 @default.
- W4281492516 hasConceptScore W4281492516C41008148 @default.
- W4281492516 hasConceptScore W4281492516C502989409 @default.
- W4281492516 hasConceptScore W4281492516C50644808 @default.
- W4281492516 hasConceptScore W4281492516C530175646 @default.
- W4281492516 hasConceptScore W4281492516C81363708 @default.
- W4281492516 hasConceptScore W4281492516C95457728 @default.
- W4281492516 hasLocation W42814925161 @default.
- W4281492516 hasOpenAccess W4281492516 @default.
- W4281492516 hasPrimaryLocation W42814925161 @default.
- W4281492516 hasRelatedWork W2731899572 @default.
- W4281492516 hasRelatedWork W2999805992 @default.
- W4281492516 hasRelatedWork W3011074480 @default.
- W4281492516 hasRelatedWork W3116150086 @default.