Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281492685> ?p ?o ?g. }
- W4281492685 abstract "Purpose Road traffic emissions are generally believed to contribute immensely to air pollution, but the effect of road traffic data sets on air quality (AQ) predictions has not been fully investigated. This paper aims to investigate the effects traffic data set have on the performance of machine learning (ML) predictive models in AQ prediction. Design/methodology/approach To achieve this, the authors have set up an experiment with the control data set having only the AQ data set and meteorological (Met) data set, while the experimental data set is made up of the AQ data set, Met data set and traffic data set. Several ML models (such as extra trees regressor, eXtreme gradient boosting regressor, random forest regressor, K-neighbors regressor and two others) were trained, tested and compared on these individual combinations of data sets to predict the volume of PM 2.5 , PM 10 , NO 2 and O 3 in the atmosphere at various times of the day. Findings The result obtained showed that various ML algorithms react differently to the traffic data set despite generally contributing to the performance improvement of all the ML algorithms considered in this study by at least 20% and an error reduction of at least 18.97%. Research limitations/implications This research is limited in terms of the study area, and the result cannot be generalized outside of the UK as some of the inherent conditions may not be similar elsewhere. Additionally, only the ML algorithms commonly used in literature are considered in this research, therefore, leaving out a few other ML algorithms. Practical implications This study reinforces the belief that the traffic data set has a significant effect on improving the performance of air pollution ML prediction models. Hence, there is an indication that ML algorithms behave differently when trained with a form of traffic data set in the development of an AQ prediction model. This implies that developers and researchers in AQ prediction need to identify the ML algorithms that behave in their best interest before implementation. Originality/value The result of this study will enable researchers to focus more on algorithms of benefit when using traffic data sets in AQ prediction." @default.
- W4281492685 created "2022-05-26" @default.
- W4281492685 creator A5008789061 @default.
- W4281492685 creator A5049477753 @default.
- W4281492685 creator A5050797761 @default.
- W4281492685 creator A5072085766 @default.
- W4281492685 creator A5080636163 @default.
- W4281492685 creator A5089254205 @default.
- W4281492685 date "2022-05-26" @default.
- W4281492685 modified "2023-10-14" @default.
- W4281492685 title "Effect of traffic data set on various machine-learning algorithms when forecasting air quality" @default.
- W4281492685 cites W2016210396 @default.
- W4281492685 cites W2070393244 @default.
- W4281492685 cites W2082583591 @default.
- W4281492685 cites W2083684149 @default.
- W4281492685 cites W2570322979 @default.
- W4281492685 cites W2581215590 @default.
- W4281492685 cites W2795125903 @default.
- W4281492685 cites W2819013944 @default.
- W4281492685 cites W2905241670 @default.
- W4281492685 cites W2952324419 @default.
- W4281492685 cites W2955613755 @default.
- W4281492685 cites W2966545360 @default.
- W4281492685 cites W2990109322 @default.
- W4281492685 cites W2990361595 @default.
- W4281492685 cites W2990366534 @default.
- W4281492685 cites W2991462618 @default.
- W4281492685 cites W3004572642 @default.
- W4281492685 cites W3009252385 @default.
- W4281492685 cites W3009728467 @default.
- W4281492685 cites W3014687155 @default.
- W4281492685 cites W3088021634 @default.
- W4281492685 cites W3096737475 @default.
- W4281492685 cites W3096966399 @default.
- W4281492685 cites W3106615506 @default.
- W4281492685 cites W3160228804 @default.
- W4281492685 cites W3165356482 @default.
- W4281492685 cites W3187300510 @default.
- W4281492685 cites W3196986434 @default.
- W4281492685 doi "https://doi.org/10.1108/jedt-10-2021-0554" @default.
- W4281492685 hasPublicationYear "2022" @default.
- W4281492685 type Work @default.
- W4281492685 citedByCount "1" @default.
- W4281492685 countsByYear W42814926852023 @default.
- W4281492685 crossrefType "journal-article" @default.
- W4281492685 hasAuthorship W4281492685A5008789061 @default.
- W4281492685 hasAuthorship W4281492685A5049477753 @default.
- W4281492685 hasAuthorship W4281492685A5050797761 @default.
- W4281492685 hasAuthorship W4281492685A5072085766 @default.
- W4281492685 hasAuthorship W4281492685A5080636163 @default.
- W4281492685 hasAuthorship W4281492685A5089254205 @default.
- W4281492685 hasBestOaLocation W42814926852 @default.
- W4281492685 hasConcept C11413529 @default.
- W4281492685 hasConcept C119857082 @default.
- W4281492685 hasConcept C124101348 @default.
- W4281492685 hasConcept C126314574 @default.
- W4281492685 hasConcept C127413603 @default.
- W4281492685 hasConcept C153294291 @default.
- W4281492685 hasConcept C154945302 @default.
- W4281492685 hasConcept C169258074 @default.
- W4281492685 hasConcept C176217482 @default.
- W4281492685 hasConcept C177264268 @default.
- W4281492685 hasConcept C199360897 @default.
- W4281492685 hasConcept C205649164 @default.
- W4281492685 hasConcept C21547014 @default.
- W4281492685 hasConcept C24756922 @default.
- W4281492685 hasConcept C41008148 @default.
- W4281492685 hasConcept C46686674 @default.
- W4281492685 hasConcept C51632099 @default.
- W4281492685 hasConcept C58489278 @default.
- W4281492685 hasConcept C70153297 @default.
- W4281492685 hasConceptScore W4281492685C11413529 @default.
- W4281492685 hasConceptScore W4281492685C119857082 @default.
- W4281492685 hasConceptScore W4281492685C124101348 @default.
- W4281492685 hasConceptScore W4281492685C126314574 @default.
- W4281492685 hasConceptScore W4281492685C127413603 @default.
- W4281492685 hasConceptScore W4281492685C153294291 @default.
- W4281492685 hasConceptScore W4281492685C154945302 @default.
- W4281492685 hasConceptScore W4281492685C169258074 @default.
- W4281492685 hasConceptScore W4281492685C176217482 @default.
- W4281492685 hasConceptScore W4281492685C177264268 @default.
- W4281492685 hasConceptScore W4281492685C199360897 @default.
- W4281492685 hasConceptScore W4281492685C205649164 @default.
- W4281492685 hasConceptScore W4281492685C21547014 @default.
- W4281492685 hasConceptScore W4281492685C24756922 @default.
- W4281492685 hasConceptScore W4281492685C41008148 @default.
- W4281492685 hasConceptScore W4281492685C46686674 @default.
- W4281492685 hasConceptScore W4281492685C51632099 @default.
- W4281492685 hasConceptScore W4281492685C58489278 @default.
- W4281492685 hasConceptScore W4281492685C70153297 @default.
- W4281492685 hasLocation W42814926851 @default.
- W4281492685 hasLocation W42814926852 @default.
- W4281492685 hasLocation W42814926853 @default.
- W4281492685 hasOpenAccess W4281492685 @default.
- W4281492685 hasPrimaryLocation W42814926851 @default.
- W4281492685 hasRelatedWork W2955385375 @default.
- W4281492685 hasRelatedWork W3006165631 @default.
- W4281492685 hasRelatedWork W3100297620 @default.
- W4281492685 hasRelatedWork W3208169454 @default.
- W4281492685 hasRelatedWork W3211193619 @default.