Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281493754> ?p ?o ?g. }
- W4281493754 endingPage "4088" @default.
- W4281493754 startingPage "4073" @default.
- W4281493754 abstract "Abstract We demonstrate a passive all-chalcogenide all-optical perceptron scheme. The network’s nonlinear activation function (NLAF) relies on the nonlinear response of Ge 2 Sb 2 Te 5 to femtosecond laser pulses. We measured the sub-picosecond time-resolved optical constants of Ge 2 Sb 2 Te 5 at a wavelength of 1500 nm and used them to design a high-speed Ge 2 Sb 2 Te 5 -tuned microring resonator all-optical NLAF. The NLAF had a sigmoidal response when subjected to different laser fluence excitation and had a dynamic range of −9.7 dB. The perceptron’s waveguide material was AlN because it allowed efficient heat dissipation during laser switching. A two-temperature analysis revealed that the operating speed of the NLAF is <m:math xmlns:m=http://www.w3.org/1998/Math/MathML overflow=scroll> <m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> $le 1$ ns. The percepton’s nonvolatile weights were set using low-loss Sb 2 S 3 -tuned Mach Zehnder interferometers (MZIs). A three-layer deep neural network model was used to test the feasibility of the network scheme and a maximum training accuracy of 94.5% was obtained. We conclude that combining Sb 2 S 3 -programmed MZI weights with the nonlinear response of Ge 2 Sb 2 Te 5 to femtosecond pulses is sufficient to perform energy-efficient all-optical neural classifications at rates greater than 1 GHz." @default.
- W4281493754 created "2022-05-26" @default.
- W4281493754 creator A5006946366 @default.
- W4281493754 creator A5013099424 @default.
- W4281493754 creator A5019018634 @default.
- W4281493754 creator A5025633988 @default.
- W4281493754 creator A5028850562 @default.
- W4281493754 creator A5028907159 @default.
- W4281493754 creator A5031013674 @default.
- W4281493754 creator A5053069725 @default.
- W4281493754 creator A5068219598 @default.
- W4281493754 creator A5082715109 @default.
- W4281493754 date "2022-05-25" @default.
- W4281493754 modified "2023-10-09" @default.
- W4281493754 title "Programmable chalcogenide-based all-optical deep neural networks" @default.
- W4281493754 cites W1412170019 @default.
- W4281493754 cites W1657293631 @default.
- W4281493754 cites W1903794615 @default.
- W4281493754 cites W1971719136 @default.
- W4281493754 cites W1976590877 @default.
- W4281493754 cites W1978446829 @default.
- W4281493754 cites W1979073325 @default.
- W4281493754 cites W1995256893 @default.
- W4281493754 cites W1995980075 @default.
- W4281493754 cites W2010244134 @default.
- W4281493754 cites W2030278948 @default.
- W4281493754 cites W2040015624 @default.
- W4281493754 cites W2056762300 @default.
- W4281493754 cites W2087947525 @default.
- W4281493754 cites W2089867010 @default.
- W4281493754 cites W2090491193 @default.
- W4281493754 cites W2091382331 @default.
- W4281493754 cites W2099610951 @default.
- W4281493754 cites W2108817071 @default.
- W4281493754 cites W2154694290 @default.
- W4281493754 cites W2253994323 @default.
- W4281493754 cites W2336371078 @default.
- W4281493754 cites W2421777723 @default.
- W4281493754 cites W2518320872 @default.
- W4281493754 cites W2520644054 @default.
- W4281493754 cites W2581137690 @default.
- W4281493754 cites W2741604392 @default.
- W4281493754 cites W2752849906 @default.
- W4281493754 cites W2765174105 @default.
- W4281493754 cites W2779612690 @default.
- W4281493754 cites W2800006831 @default.
- W4281493754 cites W2886211001 @default.
- W4281493754 cites W2894308888 @default.
- W4281493754 cites W2900709571 @default.
- W4281493754 cites W2914384582 @default.
- W4281493754 cites W2917458549 @default.
- W4281493754 cites W2919115771 @default.
- W4281493754 cites W2923894441 @default.
- W4281493754 cites W2962715917 @default.
- W4281493754 cites W2964082513 @default.
- W4281493754 cites W2968727393 @default.
- W4281493754 cites W2970080722 @default.
- W4281493754 cites W2979643732 @default.
- W4281493754 cites W2993383260 @default.
- W4281493754 cites W3010712326 @default.
- W4281493754 cites W3011224209 @default.
- W4281493754 cites W3014267345 @default.
- W4281493754 cites W3023340743 @default.
- W4281493754 cites W3030874948 @default.
- W4281493754 cites W3037905030 @default.
- W4281493754 cites W3041268832 @default.
- W4281493754 cites W3044729026 @default.
- W4281493754 cites W3045731019 @default.
- W4281493754 cites W3089584080 @default.
- W4281493754 cites W3101934849 @default.
- W4281493754 cites W3105073862 @default.
- W4281493754 cites W3110727765 @default.
- W4281493754 cites W3120165331 @default.
- W4281493754 cites W3120228857 @default.
- W4281493754 cites W3121141908 @default.
- W4281493754 cites W3157106508 @default.
- W4281493754 cites W3173575285 @default.
- W4281493754 cites W3188439734 @default.
- W4281493754 cites W3192454176 @default.
- W4281493754 cites W4200042672 @default.
- W4281493754 cites W4205756579 @default.
- W4281493754 cites W4211155226 @default.
- W4281493754 cites W4229049782 @default.
- W4281493754 cites W4237676192 @default.
- W4281493754 cites W4307248951 @default.
- W4281493754 doi "https://doi.org/10.1515/nanoph-2022-0099" @default.
- W4281493754 hasPublicationYear "2022" @default.
- W4281493754 type Work @default.
- W4281493754 citedByCount "21" @default.
- W4281493754 countsByYear W42814937542022 @default.
- W4281493754 countsByYear W42814937542023 @default.
- W4281493754 crossrefType "journal-article" @default.
- W4281493754 hasAuthorship W4281493754A5006946366 @default.
- W4281493754 hasAuthorship W4281493754A5013099424 @default.
- W4281493754 hasAuthorship W4281493754A5019018634 @default.
- W4281493754 hasAuthorship W4281493754A5025633988 @default.
- W4281493754 hasAuthorship W4281493754A5028850562 @default.
- W4281493754 hasAuthorship W4281493754A5028907159 @default.