Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281550340> ?p ?o ?g. }
- W4281550340 endingPage "6373" @default.
- W4281550340 startingPage "6373" @default.
- W4281550340 abstract "The COVID-19 pandemic raises awareness of how the fatal spreading of infectious disease impacts economic, political, and cultural sectors, which causes social implications. Across the world, strategies aimed at quickly recognizing risk factors have also helped shape public health guidelines and direct resources; however, they are challenging to analyze and predict since those events still happen. This paper intends to invesitgate the association between air pollutants and COVID-19 confirmed cases using Deep Learning. We used Delhi, India, for daily confirmed cases and air pollutant data for the dataset. We used LSTM deep learning for training the combination of COVID-19 Confirmed Case and AQI parameters over the four different lag times of 1, 3, 7, and 14 days. The finding indicates that CO is the most excellent model compared with the others, having on average, 13 RMSE values. This was followed by pressure at 15, PM2.5 at 20, NO2 at 20, and O3 at 22 error rates." @default.
- W4281550340 created "2022-05-27" @default.
- W4281550340 creator A5014618160 @default.
- W4281550340 creator A5031161487 @default.
- W4281550340 creator A5054035494 @default.
- W4281550340 creator A5063076942 @default.
- W4281550340 creator A5081650664 @default.
- W4281550340 date "2022-05-24" @default.
- W4281550340 modified "2023-09-25" @default.
- W4281550340 title "In the Seeking of Association between Air Pollutant and COVID-19 Confirmed Cases Using Deep Learning" @default.
- W4281550340 cites W2064675550 @default.
- W4281550340 cites W2168301383 @default.
- W4281550340 cites W2369617238 @default.
- W4281550340 cites W2531505586 @default.
- W4281550340 cites W2804850882 @default.
- W4281550340 cites W2805957063 @default.
- W4281550340 cites W2894793845 @default.
- W4281550340 cites W2962996339 @default.
- W4281550340 cites W2968163376 @default.
- W4281550340 cites W2990495794 @default.
- W4281550340 cites W3008506313 @default.
- W4281550340 cites W3016603561 @default.
- W4281550340 cites W3016748877 @default.
- W4281550340 cites W3033532157 @default.
- W4281550340 cites W3042669018 @default.
- W4281550340 cites W3042835190 @default.
- W4281550340 cites W3044282681 @default.
- W4281550340 cites W3090647375 @default.
- W4281550340 cites W3093725770 @default.
- W4281550340 cites W3093898877 @default.
- W4281550340 cites W3094576863 @default.
- W4281550340 cites W3105596189 @default.
- W4281550340 cites W3111499033 @default.
- W4281550340 cites W3111583617 @default.
- W4281550340 cites W3113265756 @default.
- W4281550340 cites W3119109582 @default.
- W4281550340 cites W3120792505 @default.
- W4281550340 cites W3138452121 @default.
- W4281550340 cites W3160379430 @default.
- W4281550340 cites W3162305813 @default.
- W4281550340 cites W3179054243 @default.
- W4281550340 cites W3194427067 @default.
- W4281550340 cites W3206853280 @default.
- W4281550340 cites W3211468219 @default.
- W4281550340 cites W4205399102 @default.
- W4281550340 cites W4210832662 @default.
- W4281550340 cites W4212843201 @default.
- W4281550340 cites W4213064536 @default.
- W4281550340 cites W4213109153 @default.
- W4281550340 cites W4220666431 @default.
- W4281550340 cites W4220828814 @default.
- W4281550340 cites W4223997667 @default.
- W4281550340 doi "https://doi.org/10.3390/ijerph19116373" @default.
- W4281550340 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35681961" @default.
- W4281550340 hasPublicationYear "2022" @default.
- W4281550340 type Work @default.
- W4281550340 citedByCount "1" @default.
- W4281550340 countsByYear W42815503402022 @default.
- W4281550340 crossrefType "journal-article" @default.
- W4281550340 hasAuthorship W4281550340A5014618160 @default.
- W4281550340 hasAuthorship W4281550340A5031161487 @default.
- W4281550340 hasAuthorship W4281550340A5054035494 @default.
- W4281550340 hasAuthorship W4281550340A5063076942 @default.
- W4281550340 hasAuthorship W4281550340A5081650664 @default.
- W4281550340 hasBestOaLocation W42815503401 @default.
- W4281550340 hasConcept C105795698 @default.
- W4281550340 hasConcept C108583219 @default.
- W4281550340 hasConcept C116675565 @default.
- W4281550340 hasConcept C138816342 @default.
- W4281550340 hasConcept C139945424 @default.
- W4281550340 hasConcept C142724271 @default.
- W4281550340 hasConcept C142853389 @default.
- W4281550340 hasConcept C154945302 @default.
- W4281550340 hasConcept C15744967 @default.
- W4281550340 hasConcept C159047783 @default.
- W4281550340 hasConcept C18903297 @default.
- W4281550340 hasConcept C2779134260 @default.
- W4281550340 hasConcept C2987853052 @default.
- W4281550340 hasConcept C3006700255 @default.
- W4281550340 hasConcept C3007834351 @default.
- W4281550340 hasConcept C3008058167 @default.
- W4281550340 hasConcept C31258907 @default.
- W4281550340 hasConcept C33923547 @default.
- W4281550340 hasConcept C41008148 @default.
- W4281550340 hasConcept C524204448 @default.
- W4281550340 hasConcept C542102704 @default.
- W4281550340 hasConcept C559116025 @default.
- W4281550340 hasConcept C71924100 @default.
- W4281550340 hasConcept C75778745 @default.
- W4281550340 hasConcept C82685317 @default.
- W4281550340 hasConcept C86803240 @default.
- W4281550340 hasConcept C89623803 @default.
- W4281550340 hasConcept C99454951 @default.
- W4281550340 hasConceptScore W4281550340C105795698 @default.
- W4281550340 hasConceptScore W4281550340C108583219 @default.
- W4281550340 hasConceptScore W4281550340C116675565 @default.
- W4281550340 hasConceptScore W4281550340C138816342 @default.
- W4281550340 hasConceptScore W4281550340C139945424 @default.