Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281552020> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4281552020 endingPage "21" @default.
- W4281552020 startingPage "10" @default.
- W4281552020 abstract "This paper is an exploration of the synthetic division in compact form. The main goal was to develop an alternative algorithm on division of polynomials whose dividend is P(x) = a1xn + a2xn−1 + a3xn−2 + ⋯ + anx + an+1 and the divisor is D(x) = b1xm + b2xm−1 + b3xm−2 … + bmx + bm+1 , where n > m, a1 ≠ 0, b1 ≠ 0, and ai′s and bi′s including an+1 and bm+1 are constant. The quotient is in the form Q(x) = q1xn−m + q2xn−m−1 + q3xn−m−2 + ⋯ + qn−mx + qn−m+1 while the remainder is R(x) = r1xm−1 + r2xm−2 + ⋯ + rm−1 + rm. Specifically, this aimed to develop an algorithm using synthetic division in compact arrangement when b1=1 and b1≠1, to provide additional conditions to the problems where the usual synthetic divisions are inappropriate, and to generalize the developed algorithm of dividing polynomials of higher degrees. Basic research was employed in this study. This resulted to the development of alternative algorithm initially for quadratic, cubic and quartic divisors. Also, the conditions on inappropriateness of the usual synthetic division were identified. To wit, (a) the divisor D(x) = b1xm + b2xm−1 + b3xm−2 + ⋯ + bmx + bm−1 is prime or irreducible; (b) in case D(x) is reducible, at least one of the factors of D(x) is irreducible non-linear polynomial; and (c) in case D(x) is reducible and its factors are all linear polynomial (either monic or non-monic), one of them is not a factor of P(x). As a generalized result, the quotient is formulated as Q(x) = q1xn−m + q2xn−m−1 + q3xn−m−2 + ⋯ + qn−mx + qn−m+1 where qn = an − b2qn−1 − ⋯ − bm+1qn−m if b1 = 1 or qn = an−b2qn−1−⋯−bm+1qn−m b1 if b1 ≠ 1 while the remainder is R(x) = r1xm−1 + ⋯ + rm−3x3 + rm−2x2 + rm−1x + rm where r1 = qn−m+2, r2 = qn−m+3, r3 = qn−m+4,…, rm. Hence, the results comprise algorithms, conditions and generalized formula that can be used as alternative method in dividing polynomials with non-linear polynomial divisors. Keywords: Mathematics education, Synthetic division, Basic research, Philippines" @default.
- W4281552020 created "2022-05-27" @default.
- W4281552020 creator A5023623192 @default.
- W4281552020 creator A5044160042 @default.
- W4281552020 date "2022-03-22" @default.
- W4281552020 modified "2023-10-05" @default.
- W4281552020 title "An Exploration of Synthetic Division for Non-Linear Polynomial Divisors" @default.
- W4281552020 doi "https://doi.org/10.54476/5292497" @default.
- W4281552020 hasPublicationYear "2022" @default.
- W4281552020 type Work @default.
- W4281552020 citedByCount "0" @default.
- W4281552020 crossrefType "journal-article" @default.
- W4281552020 hasAuthorship W4281552020A5023623192 @default.
- W4281552020 hasAuthorship W4281552020A5044160042 @default.
- W4281552020 hasBestOaLocation W42815520201 @default.
- W4281552020 hasConcept C101044782 @default.
- W4281552020 hasConcept C114614502 @default.
- W4281552020 hasConcept C118615104 @default.
- W4281552020 hasConcept C125257309 @default.
- W4281552020 hasConcept C130432447 @default.
- W4281552020 hasConcept C134306372 @default.
- W4281552020 hasConcept C136119220 @default.
- W4281552020 hasConcept C163635466 @default.
- W4281552020 hasConcept C165030954 @default.
- W4281552020 hasConcept C184992742 @default.
- W4281552020 hasConcept C190715199 @default.
- W4281552020 hasConcept C199422724 @default.
- W4281552020 hasConcept C202444582 @default.
- W4281552020 hasConcept C203492994 @default.
- W4281552020 hasConcept C30860621 @default.
- W4281552020 hasConcept C33923547 @default.
- W4281552020 hasConcept C60798267 @default.
- W4281552020 hasConcept C90119067 @default.
- W4281552020 hasConcept C94375191 @default.
- W4281552020 hasConceptScore W4281552020C101044782 @default.
- W4281552020 hasConceptScore W4281552020C114614502 @default.
- W4281552020 hasConceptScore W4281552020C118615104 @default.
- W4281552020 hasConceptScore W4281552020C125257309 @default.
- W4281552020 hasConceptScore W4281552020C130432447 @default.
- W4281552020 hasConceptScore W4281552020C134306372 @default.
- W4281552020 hasConceptScore W4281552020C136119220 @default.
- W4281552020 hasConceptScore W4281552020C163635466 @default.
- W4281552020 hasConceptScore W4281552020C165030954 @default.
- W4281552020 hasConceptScore W4281552020C184992742 @default.
- W4281552020 hasConceptScore W4281552020C190715199 @default.
- W4281552020 hasConceptScore W4281552020C199422724 @default.
- W4281552020 hasConceptScore W4281552020C202444582 @default.
- W4281552020 hasConceptScore W4281552020C203492994 @default.
- W4281552020 hasConceptScore W4281552020C30860621 @default.
- W4281552020 hasConceptScore W4281552020C33923547 @default.
- W4281552020 hasConceptScore W4281552020C60798267 @default.
- W4281552020 hasConceptScore W4281552020C90119067 @default.
- W4281552020 hasConceptScore W4281552020C94375191 @default.
- W4281552020 hasIssue "1" @default.
- W4281552020 hasLocation W42815520201 @default.
- W4281552020 hasOpenAccess W4281552020 @default.
- W4281552020 hasPrimaryLocation W42815520201 @default.
- W4281552020 hasRelatedWork W1571629760 @default.
- W4281552020 hasRelatedWork W1965811650 @default.
- W4281552020 hasRelatedWork W1985610088 @default.
- W4281552020 hasRelatedWork W2000843681 @default.
- W4281552020 hasRelatedWork W2037752989 @default.
- W4281552020 hasRelatedWork W2076499982 @default.
- W4281552020 hasRelatedWork W2119235173 @default.
- W4281552020 hasRelatedWork W2963611923 @default.
- W4281552020 hasRelatedWork W4281552020 @default.
- W4281552020 hasRelatedWork W4308351151 @default.
- W4281552020 hasVolume "4" @default.
- W4281552020 isParatext "false" @default.
- W4281552020 isRetracted "false" @default.
- W4281552020 workType "article" @default.