Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281554899> ?p ?o ?g. }
- W4281554899 endingPage "111372" @default.
- W4281554899 startingPage "111372" @default.
- W4281554899 abstract "Machine learning has shown to be a powerful diagnostic tool for interpreting guided wave signals towards modeling damage indexes. However, few works propose the use of machine learning techniques to build an automatic health diagnosis framework for composite welding. This work aims to devise an automatic diagnostic tool based on the propagation of ultrasonic guided waves for composite weld defect detection. Different feature extraction methods and machine learning modeling paradigms are investigated to highlight the most suitable strategy for performing the task. The support vector machine with autoregressive features resulted in the best overall performance. The accuracy was improved by 123.04% compared to other methods present in the literature, and satisfactory computational complexity was achieved. We have extended the previously reported results, showing that feature engineering enhances the model’s effectiveness, making it possible to devise an automatic diagnosis framework that uses multi-frequency data and enables small data evaluation using resampling." @default.
- W4281554899 created "2022-05-27" @default.
- W4281554899 creator A5027789655 @default.
- W4281554899 creator A5032061545 @default.
- W4281554899 creator A5034619730 @default.
- W4281554899 creator A5039024914 @default.
- W4281554899 date "2022-07-01" @default.
- W4281554899 modified "2023-10-16" @default.
- W4281554899 title "Improved feature extraction of guided wave signals for defect detection in welded thermoplastic composite joints" @default.
- W4281554899 cites W1500974069 @default.
- W4281554899 cites W1588100052 @default.
- W4281554899 cites W1976618596 @default.
- W4281554899 cites W2006676204 @default.
- W4281554899 cites W2013215710 @default.
- W4281554899 cites W2022608789 @default.
- W4281554899 cites W2069796856 @default.
- W4281554899 cites W2077562320 @default.
- W4281554899 cites W2088803330 @default.
- W4281554899 cites W2110574346 @default.
- W4281554899 cites W2151554678 @default.
- W4281554899 cites W2320998174 @default.
- W4281554899 cites W2481671331 @default.
- W4281554899 cites W2492432421 @default.
- W4281554899 cites W2517582325 @default.
- W4281554899 cites W2528842032 @default.
- W4281554899 cites W2562693633 @default.
- W4281554899 cites W2604262106 @default.
- W4281554899 cites W2696985769 @default.
- W4281554899 cites W2762016632 @default.
- W4281554899 cites W2766555361 @default.
- W4281554899 cites W2773400987 @default.
- W4281554899 cites W2779159842 @default.
- W4281554899 cites W2791213346 @default.
- W4281554899 cites W2791623259 @default.
- W4281554899 cites W2793592543 @default.
- W4281554899 cites W2794113318 @default.
- W4281554899 cites W2801921227 @default.
- W4281554899 cites W2886121007 @default.
- W4281554899 cites W2886442501 @default.
- W4281554899 cites W2898516449 @default.
- W4281554899 cites W2902551404 @default.
- W4281554899 cites W2911964244 @default.
- W4281554899 cites W2923727767 @default.
- W4281554899 cites W2935804788 @default.
- W4281554899 cites W2950674600 @default.
- W4281554899 cites W2951824029 @default.
- W4281554899 cites W2957579702 @default.
- W4281554899 cites W2976716357 @default.
- W4281554899 cites W2979449653 @default.
- W4281554899 cites W2980060779 @default.
- W4281554899 cites W2990660750 @default.
- W4281554899 cites W2996473606 @default.
- W4281554899 cites W2998506103 @default.
- W4281554899 cites W3005624765 @default.
- W4281554899 cites W3011339157 @default.
- W4281554899 cites W3014046978 @default.
- W4281554899 cites W3020789896 @default.
- W4281554899 cites W3034159764 @default.
- W4281554899 cites W3037454492 @default.
- W4281554899 cites W3037923319 @default.
- W4281554899 cites W3045896959 @default.
- W4281554899 cites W3092008631 @default.
- W4281554899 cites W3098340457 @default.
- W4281554899 cites W3131671510 @default.
- W4281554899 cites W3148609646 @default.
- W4281554899 cites W3159137010 @default.
- W4281554899 cites W3173670101 @default.
- W4281554899 cites W3210847953 @default.
- W4281554899 cites W3212225267 @default.
- W4281554899 cites W4212883601 @default.
- W4281554899 doi "https://doi.org/10.1016/j.measurement.2022.111372" @default.
- W4281554899 hasPublicationYear "2022" @default.
- W4281554899 type Work @default.
- W4281554899 citedByCount "5" @default.
- W4281554899 countsByYear W42815548992022 @default.
- W4281554899 countsByYear W42815548992023 @default.
- W4281554899 crossrefType "journal-article" @default.
- W4281554899 hasAuthorship W4281554899A5027789655 @default.
- W4281554899 hasAuthorship W4281554899A5032061545 @default.
- W4281554899 hasAuthorship W4281554899A5034619730 @default.
- W4281554899 hasAuthorship W4281554899A5039024914 @default.
- W4281554899 hasConcept C108583219 @default.
- W4281554899 hasConcept C119857082 @default.
- W4281554899 hasConcept C121332964 @default.
- W4281554899 hasConcept C12267149 @default.
- W4281554899 hasConcept C127413603 @default.
- W4281554899 hasConcept C13280743 @default.
- W4281554899 hasConcept C138885662 @default.
- W4281554899 hasConcept C149782125 @default.
- W4281554899 hasConcept C150921843 @default.
- W4281554899 hasConcept C153180895 @default.
- W4281554899 hasConcept C154945302 @default.
- W4281554899 hasConcept C159877910 @default.
- W4281554899 hasConcept C162324750 @default.
- W4281554899 hasConcept C185798385 @default.
- W4281554899 hasConcept C19474535 @default.
- W4281554899 hasConcept C201995342 @default.
- W4281554899 hasConcept C205649164 @default.