Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281562310> ?p ?o ?g. }
- W4281562310 endingPage "14" @default.
- W4281562310 startingPage "1" @default.
- W4281562310 abstract "Most multicellular organisms require apoptosis, or programmed cell death, to function properly and survive. On the other hand, morphological and biochemical characteristics of apoptosis have remained remarkably consistent throughout evolution. Apoptosis is thought to have at least three functionally distinct phases: induction, effector, and execution. Recent studies have revealed that reactive oxygen species (ROS) and the oxidative stress could play an essential role in apoptosis. Advanced microscopic imaging techniques allow biologists to acquire an extensive amount of cell images within a matter of minutes which rule out the manual analysis of image data acquisition. The segmentation of cell images is often considered the cornerstone and central problem for image analysis. Currently, the issue of segmentation of mitochondrial cell images via deep learning receives increasing attention. The manual labeling of cell images is time-consuming and challenging to train a pro. As a courtesy method, mitochondrial cell imaging (MCI) is proposed to identify the normal, drug-treated, and diseased cells. Furthermore, cell movement (fission and fusion) is measured to evaluate disease risk. The newly proposed drug-treated, normal, and diseased image segmentation (DNDIS) algorithm can quickly segment mitochondrial cell images without supervision and further segment the highly drug-treated cells in the picture, i.e., normal, diseased, and drug-treated cells. The proposed method is based on the ResNet-50 deep learning algorithm. The dataset consists of 414 images mainly categorised into different sets (drug, diseased, and normal) used microscopically. The proposed automated segmentation method has outperformed and secured high precision (90%, 92%, and 94%); moreover, it also achieves proper training. This study will benefit medicines and diseased cell measurements in medical tests and clinical practices." @default.
- W4281562310 created "2022-05-27" @default.
- W4281562310 creator A5001188748 @default.
- W4281562310 creator A5004733863 @default.
- W4281562310 creator A5008412587 @default.
- W4281562310 creator A5012360964 @default.
- W4281562310 creator A5023805968 @default.
- W4281562310 creator A5043265354 @default.
- W4281562310 creator A5077931586 @default.
- W4281562310 creator A5083808204 @default.
- W4281562310 date "2022-05-26" @default.
- W4281562310 modified "2023-10-14" @default.
- W4281562310 title "Segmentation of Drug-Treated Cell Image and Mitochondrial-Oxidative Stress Using Deep Convolutional Neural Network" @default.
- W4281562310 cites W133651055 @default.
- W4281562310 cites W1641498739 @default.
- W4281562310 cites W1901129140 @default.
- W4281562310 cites W1975833234 @default.
- W4281562310 cites W1979393293 @default.
- W4281562310 cites W1993193922 @default.
- W4281562310 cites W2021460489 @default.
- W4281562310 cites W2053802831 @default.
- W4281562310 cites W2059846849 @default.
- W4281562310 cites W2094454542 @default.
- W4281562310 cites W2155893237 @default.
- W4281562310 cites W2172062963 @default.
- W4281562310 cites W2194775991 @default.
- W4281562310 cites W2372644126 @default.
- W4281562310 cites W2396649694 @default.
- W4281562310 cites W2581591112 @default.
- W4281562310 cites W2598992304 @default.
- W4281562310 cites W2604468722 @default.
- W4281562310 cites W2737373222 @default.
- W4281562310 cites W2750021267 @default.
- W4281562310 cites W2775688034 @default.
- W4281562310 cites W2803684675 @default.
- W4281562310 cites W2883890990 @default.
- W4281562310 cites W2888612993 @default.
- W4281562310 cites W2899476650 @default.
- W4281562310 cites W2899502748 @default.
- W4281562310 cites W2900936384 @default.
- W4281562310 cites W2908984248 @default.
- W4281562310 cites W2912449434 @default.
- W4281562310 cites W2918459215 @default.
- W4281562310 cites W2943118732 @default.
- W4281562310 cites W2943507717 @default.
- W4281562310 cites W2950515178 @default.
- W4281562310 cites W2950581953 @default.
- W4281562310 cites W2956175108 @default.
- W4281562310 cites W2960917605 @default.
- W4281562310 cites W2962948284 @default.
- W4281562310 cites W2963037989 @default.
- W4281562310 cites W2963820266 @default.
- W4281562310 cites W2971370669 @default.
- W4281562310 cites W2979893065 @default.
- W4281562310 cites W3033204966 @default.
- W4281562310 cites W3034969314 @default.
- W4281562310 cites W3041179787 @default.
- W4281562310 cites W3041654526 @default.
- W4281562310 cites W3092560741 @default.
- W4281562310 cites W3093785423 @default.
- W4281562310 cites W3100715666 @default.
- W4281562310 cites W3103626080 @default.
- W4281562310 cites W3112557529 @default.
- W4281562310 cites W3118382476 @default.
- W4281562310 cites W3126410406 @default.
- W4281562310 cites W3126486838 @default.
- W4281562310 cites W3140246729 @default.
- W4281562310 cites W3212088557 @default.
- W4281562310 cites W4200301898 @default.
- W4281562310 cites W4206252778 @default.
- W4281562310 cites W4210248601 @default.
- W4281562310 cites W4210625202 @default.
- W4281562310 cites W4313008851 @default.
- W4281562310 cites W4376629770 @default.
- W4281562310 doi "https://doi.org/10.1155/2022/5641727" @default.
- W4281562310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35663204" @default.
- W4281562310 hasPublicationYear "2022" @default.
- W4281562310 type Work @default.
- W4281562310 citedByCount "11" @default.
- W4281562310 countsByYear W42815623102022 @default.
- W4281562310 countsByYear W42815623102023 @default.
- W4281562310 crossrefType "journal-article" @default.
- W4281562310 hasAuthorship W4281562310A5001188748 @default.
- W4281562310 hasAuthorship W4281562310A5004733863 @default.
- W4281562310 hasAuthorship W4281562310A5008412587 @default.
- W4281562310 hasAuthorship W4281562310A5012360964 @default.
- W4281562310 hasAuthorship W4281562310A5023805968 @default.
- W4281562310 hasAuthorship W4281562310A5043265354 @default.
- W4281562310 hasAuthorship W4281562310A5077931586 @default.
- W4281562310 hasAuthorship W4281562310A5083808204 @default.
- W4281562310 hasBestOaLocation W42815623101 @default.
- W4281562310 hasConcept C108583219 @default.
- W4281562310 hasConcept C124504099 @default.
- W4281562310 hasConcept C1491633281 @default.
- W4281562310 hasConcept C153180895 @default.
- W4281562310 hasConcept C154945302 @default.
- W4281562310 hasConcept C190283241 @default.
- W4281562310 hasConcept C2776151105 @default.