Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281563591> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4281563591 abstract "Understanding the relationship between the structure of chemical reaction networks and their reaction dynamics is essential for unveiling the design principles of living organisms. However, while some network-structural features are known to relate to the steady-state characteristics of chemical reaction networks, mathematical frameworks describing the links between out-of-steady-state dynamics and network structure are still underdeveloped. Here, we characterize the out-of-steady-state behavior of a class of artifical chemical reaction networks consisting of the ligation and splitting reactions of polymers and. Within this class we examine minimal networks that can convert a given set of inputs (e.g., nutrients) to a specified set of targets (e.g., biomass precursors). We find three distinct types of relaxation dynamics after perturbation from a steady-state: exponential-, power-law-, and plateau-dominated. We show that we can predict this out-of-steady-state dynamical behavior from just three features computed from the network’s stoichiometric matrix, namely, (i) the rank gap, determining the existence of a steady-state; (ii) the left null-space, being related to conserved quantities in the dynamics; and (iii) the stoichiometric cone, dictating the range of achievable chemical concentrations. We further demonstrate that these three quantities also predict the type of relaxation dynamics of combinations of our minimal networks, larger networks with many redundant pathways, and a real example of a metabolic network. The unified method to predict the qualitative features of the relaxation dynamics presented here can provide a basis for understanding the design of metabolic reaction networks as well as industrially useful chemical production pathways. Significance Statement The relationship between network structure and chemical reaction dynamics is of central interest in chemical reaction network theory, as it underlies chemical manufacturing, cellular metabolism, and bioengineering. The links between structure and steady-state properties have been extensively investigated. However, how far the network structure determines the out-of-steady-state, transient dynamics of chemical reactions is unexplored. Here we construct a chemical reaction network model that is simple but generates a wide variety of network instances. By exploring the networks’ structural- and dynamical features, we found that three network-structural features are sufficient to predict the qualitative characteristics of the relaxation dynamics after the chemical concentrations are perturbed from their steady-state. Our findings provide a foundation for the structure-based prediction of chemical reaction dynamics." @default.
- W4281563591 created "2022-05-27" @default.
- W4281563591 creator A5011830037 @default.
- W4281563591 creator A5013570173 @default.
- W4281563591 creator A5022625151 @default.
- W4281563591 creator A5088702916 @default.
- W4281563591 date "2022-05-25" @default.
- W4281563591 modified "2023-10-03" @default.
- W4281563591 title "Structural determinants of relaxation dynamics in chemical reaction networks" @default.
- W4281563591 cites W1597762351 @default.
- W4281563591 cites W1969253588 @default.
- W4281563591 cites W1985161570 @default.
- W4281563591 cites W2010579377 @default.
- W4281563591 cites W2018049970 @default.
- W4281563591 cites W2019631913 @default.
- W4281563591 cites W2025579355 @default.
- W4281563591 cites W2040391983 @default.
- W4281563591 cites W2042721691 @default.
- W4281563591 cites W2075329036 @default.
- W4281563591 cites W2078833660 @default.
- W4281563591 cites W2100609826 @default.
- W4281563591 cites W2107179556 @default.
- W4281563591 cites W2107333582 @default.
- W4281563591 cites W2115606218 @default.
- W4281563591 cites W2129887334 @default.
- W4281563591 cites W2165476125 @default.
- W4281563591 cites W2765912798 @default.
- W4281563591 cites W2911585371 @default.
- W4281563591 cites W3033803671 @default.
- W4281563591 cites W3096828292 @default.
- W4281563591 cites W3103092523 @default.
- W4281563591 cites W3103786587 @default.
- W4281563591 cites W3213092776 @default.
- W4281563591 cites W4224275475 @default.
- W4281563591 cites W567708786 @default.
- W4281563591 doi "https://doi.org/10.1101/2022.05.25.493374" @default.
- W4281563591 hasPublicationYear "2022" @default.
- W4281563591 type Work @default.
- W4281563591 citedByCount "0" @default.
- W4281563591 crossrefType "posted-content" @default.
- W4281563591 hasAuthorship W4281563591A5011830037 @default.
- W4281563591 hasAuthorship W4281563591A5013570173 @default.
- W4281563591 hasAuthorship W4281563591A5022625151 @default.
- W4281563591 hasAuthorship W4281563591A5088702916 @default.
- W4281563591 hasBestOaLocation W42815635911 @default.
- W4281563591 hasConcept C118615104 @default.
- W4281563591 hasConcept C121332964 @default.
- W4281563591 hasConcept C121864883 @default.
- W4281563591 hasConcept C123757187 @default.
- W4281563591 hasConcept C147789679 @default.
- W4281563591 hasConcept C169760540 @default.
- W4281563591 hasConcept C177801218 @default.
- W4281563591 hasConcept C185592680 @default.
- W4281563591 hasConcept C186060115 @default.
- W4281563591 hasConcept C2776029896 @default.
- W4281563591 hasConcept C33923547 @default.
- W4281563591 hasConcept C41008148 @default.
- W4281563591 hasConcept C55493867 @default.
- W4281563591 hasConcept C8171440 @default.
- W4281563591 hasConcept C86803240 @default.
- W4281563591 hasConceptScore W4281563591C118615104 @default.
- W4281563591 hasConceptScore W4281563591C121332964 @default.
- W4281563591 hasConceptScore W4281563591C121864883 @default.
- W4281563591 hasConceptScore W4281563591C123757187 @default.
- W4281563591 hasConceptScore W4281563591C147789679 @default.
- W4281563591 hasConceptScore W4281563591C169760540 @default.
- W4281563591 hasConceptScore W4281563591C177801218 @default.
- W4281563591 hasConceptScore W4281563591C185592680 @default.
- W4281563591 hasConceptScore W4281563591C186060115 @default.
- W4281563591 hasConceptScore W4281563591C2776029896 @default.
- W4281563591 hasConceptScore W4281563591C33923547 @default.
- W4281563591 hasConceptScore W4281563591C41008148 @default.
- W4281563591 hasConceptScore W4281563591C55493867 @default.
- W4281563591 hasConceptScore W4281563591C8171440 @default.
- W4281563591 hasConceptScore W4281563591C86803240 @default.
- W4281563591 hasLocation W42815635911 @default.
- W4281563591 hasOpenAccess W4281563591 @default.
- W4281563591 hasPrimaryLocation W42815635911 @default.
- W4281563591 hasRelatedWork W1490335990 @default.
- W4281563591 hasRelatedWork W2002745005 @default.
- W4281563591 hasRelatedWork W2081622457 @default.
- W4281563591 hasRelatedWork W2306127428 @default.
- W4281563591 hasRelatedWork W2329542979 @default.
- W4281563591 hasRelatedWork W2792802992 @default.
- W4281563591 hasRelatedWork W2898285107 @default.
- W4281563591 hasRelatedWork W2904812633 @default.
- W4281563591 hasRelatedWork W3119607919 @default.
- W4281563591 hasRelatedWork W4281634000 @default.
- W4281563591 isParatext "false" @default.
- W4281563591 isRetracted "false" @default.
- W4281563591 workType "article" @default.